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Abstract

This is a document written specifically for students who has no previous
knowledge of simple harmonic motion. It assumes from some elementary
concepts in Newtonian Mechanics and the fundamental concepts of simple
harmonic motion will be introduced. This includes the definition and some
representations of simple harmonic motion using advanced mathematical
concepts.
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Preface and Usage of Notes

My last official physics notes for the Queen’s College Physics Olympiad was
made in 2016. Back then, it followed the format of my predecessor and had
little explanation. We believed that the notes for QCPhO were made for
revision, hence all the derivation should be omitted as that would prevent the
students from realising the most important results of each topic. However,
as I soon found out, it was not entirely desirable to leave out the derivations
for the physical concepts as one may find it useful to go through that to
further their understanding on the topic. I therefore added a supplementary
section for the derivations of SHM at the back of my notes, yet it contained
little content and was not self-sufficient to demonstrate the importance of
SHM. This document is hence a follow-up of my previous set of notes and it
aims to serve as a part of a set of reference notes for the coming tutors. It
is also a fragment of the book that would (hopefully) be completed by the
summer of 2019.

The content of the notes stretches far from what is required to compete in
the Hong Kong Physics Olympiad. However, it is a part of the fundamental
knowledge required to fully understand the mechanisms of oscillations and
harmonic motion, which in turn is the foundation of much of modern physics
developed in early 20th century. It is therefore most useful for the reader to
go through the notes in their own pace, such that he or she can grasp the
concepts fully before one moves on to move advanced topics.

I owe my gratitude to Dr. John Biggins and Dr. Neil Greenham of the
University of Cambridge for the inspiration for this set of notes as their
notes and courses on Oscillating Systems gave me new insight as to how
the topic should be presented. I also owe my deep thanks to Albus Poon,
Matthew Tong, Thomas Yuen and Hillman Lai for proofreading the set of
notes for me.
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1 Definition of Harmonic Motion

A harmonic motion is a type of periodic motion that repeats itself in a given
set of period. This type of motion can be found anywhere from mechanical
to electrical situations. It is also the fundamental concept in wave optics.
Examples of harmonic motion include pendulums and alternate circuits.
Since harmonic motions are so ubiquitous, it is important that we analyse
and understand the physical and mathematical formulations of it. In the
following sections, we are exactly going to do that. As for the next section,
various preliminary knowledge points are listed to refresh your memory be-
fore you begin reading the following sections.

2 Preliminary knowledge

2.1 Kinematics

2.1.1 Displacement

In a 3D space, we define an object’s displacement as a separation vector
between its initial position and its final position, both defined as a point in
the space. This separation vector is called a displacement vector, with its tail
originating from the initial point and its tip pointing to its final point. In the
following text, the displacement of a mechanical system will be described
using x or s, with its vector symbol dropped off for simplification.

2.1.2 Velocity

The velocity of an object is defined as the infinitesimal change of an object’s
displacement in a short period of time, i.e. the derivative of displacement
with respect to time. This is represented by ẋ in the following text.

2.1.3 Acceleration

The acceleration of an object is defined as the derivative of velocity with
respect to time. Since velocity is the derivative of displacement with respect
to time, the acceleration is therefore the double derivative of displacement
with respect to time. This is represented by ẍ in the following text.

2.2 Newton’s Laws of Motion

Newton’s Laws of Motion are physical laws that are formulated from ex-
perimental evidence. They are the basis of the formation of Newtonian
Mechanics.
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2.2.1 Newton’s First Law of Motion

Newton’s First Law of Motion states that an object retains its form of motion
if no net force (or, torque) is acting on it. It is alternatively named as Law
of Inertia. You are reminded that this is not the same as Inertia, which is
a physical property of an object that describes its reluctance to change its
state of motion.

2.2.2 Newton’s Second Law of Motion

The momentum of a body is defined as the mass times the velocity of a
body. It is a special property of a moving body. In mathematical symbols:

p = mv (1)

Newton’s Second Law of Motion states that the rate of change of momentum
of an object is proportional to the force acting on the object and has the
same direction as the force. Notice that this ”force” mentioned actually
refers to the net force acting on the object. The mathematical statement is
as follows:

Fnet =
dp

dt
(2)

It also has an alternative form that may be more familiar to you:

Fnet = ma (3)

2.2.3 Newton’s Third Law of Motion

Newton’s Third Law of Motion states that if one body, A, exerts a force,
FA→B, on another body, B, then the force, FB→A exerted by B on A is
equal and opposite to the original force. Mathematically,

FA→B = −FB→A (4)

Notice that the action and reaction act on different bodies.

2.3 Energy and Power

2.3.1 Work-Energy Theorem

The Work-Energy Theorem is a direct consequence of Newton’s Second Law
of Motion. Its formulation is as below:

F =
dp

dt

F = m
dv

dt
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F · dx = m
dv

dt
· dx∫

C
F · dx =

∫ v

u
m
dv

dt
· dx∫

C
F · dx = m

∫ v

u

dx

dt
· dv∫

C
F · dx = m

∫ v

u
v · dv∫

C
F · dx = m

∫ v

u
vdv∫

C
F · dx = m

1

2
v2
∣∣∣v
u∫

C
F · dx =

1

2
mv2 − 1

2
mu2 (5)

The right-hand side of the equation represents the change of kinetic energy
of the system. The left-hand side of the equation is the work done by an
external force, where

∫
C corresponds to a path integral. This work done can

be done by a conservative force, for which this term can then be replaced
by a change of potential energy.

2.3.2 Power

Power is defined as the derivative of energy with respect to time. Mathe-
matically,

P =
dE

dt
(6)

You can also regard power as the rate of doing work.

2.3.3 Conservation of Energy

Conservation of Energy is an independent physical law stating that the total
energy of a system is conserved in an isolated system. Notice that this is not
the same as the work-energy theorem. The work-energy theorem is a direct
consequence of the Second Law of Motion, while conservation of energy is
an independent physical law from experimental results. You should make
sure that you never confuse between the two laws as they are fundamentally
different, although you may obtain the result of energy conservation from
the work-energy theorem.



2 PRELIMINARY KNOWLEDGE 4

2.4 Circular Motion

2.4.1 Analogy to Linear Motion

In a lot of ways, quantities in circular motion is directly analogous to that in
linear motion. The following is a table of quantities used in circular motion.

Notations in linear and circular motion

Quantity Linear Circular

Displacement x θ

Velocity ẋ θ̇

Acceleration ẍ θ̈
Inertia m I
Force F τ
Momentum p L

The angular equivalent of linear kinematic terms are named by adding
”angular” before the original terms. Some important equations are given as
follows:

v = rθ̇ = rω (7)

a = rθ̈ = rα (8)

where the vector signs are dropped for convenience. The angular equivalent
of mass is termed moment of inertia. In fixed axis rotation, you can calculate
a body’s moment of inertia by the following formula:

I =

∫
r2dm (9)

The angular equivalent of force and momentum is termed torque and angular
momentum. The relationship between the linear terms and angular terms
is given by:

τ = r× F (10)

L = r× p (11)

where the two are related by the rotational form of Second Law of Motion:

τ =
dL

dt
(12)

where r is the displacement vector from the pivot. The total kinetic energy
is, hence, given by:

KE =
1

2
mv2 +

1

2
Iω2 (13)
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2.5 Frequency and Period

The frequency of a harmonic (circular) motion is the number of complete
cycles achieved in one second. It is usually denoted by the symbol f or
ν. The period of a motion is the time required for a complete cycle to be
achieved, and it is denoted by the symbol T . It should be apparent that the
reciprocal of period gives the frequency of the motion:

ν =
1

T
(14)

The angular frequency ω of a motion is the angle (in radians) achieved in
one second. It is simply defined by:

ω = 2πν =
2π

T
(15)

You might be confused that ω both represents angular velocity and angular
frequency. In fact, if you look at the definition, they are actually referring
to the same thing!
If you do not understand the above notes made, you should consult your
tutor, previous notes or any mechanics books as all of the concepts will be
applied in the following sections.

3 Definition of Simple Harmonic Motion and the
spring-mass system

A simple harmonic motion is a special kind of harmonic motion for which
when the system is slightly disturbed from its equilibrium position, it would
oscillate with a restoring force proportional to the displacement. This can
be represented by a general equation:

ẍ = −ω2x (16)

where ω is the angular frequency of the oscillation. This equation is often
also called the fundamental SHM equation. We shall return to this later.
An example of a simple harmonic oscillator, a system that undergoes SHM,
is the spring mass system. (See figure 1) Consider a mass m resting on a
frictionless surface while connecting to the wall by a spring of spring constant
k. When the mass is slightly displaced from the equilibrium position, by
Hooke’s Law, the restoring force is given by:

Frestoring = −kx (17)

where the negative sign is present to signify that the direction of extension
of the spring is opposite to the direction of the force. Combining this with
Newton’s Second Law of motion gives:

mẍ = −kx
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mk

Figure 1: A simple harmonic system called a spring-mass system. A ball
of mass m is connected to the wall by a spring with a spring constant k.
Assume that all surfaces are frictionless.

ẍ = − k
m
x (18)

The equation of motion of the spring mass system obeys with that of the
general SHM motion. This shows that the system undergoes SHM.

4 Solutions of the general SHM equation

Let us return to the general equation of SHM and solve the differential
equation. By substitution of the eigenfunction of differential equations, we
have:

ẍ+ ω2x = 0

⇒ ρ2 + ω2 = 0

ρ = ±iω

Hence we will obtain:
x(t) = Eeiωt + Fe−iωt (19)

At this point, you should notice that the solution of the differential equation
must be real. Taking the real part of the solution, we have:

x(t) = C cosωt+D sinωt (20)

where C, D, E and F are arbitrary constants. This therefore gives us the
displacement of the system. You may check that our solution obeys the
original differential equation by substituting the solutions in:

ẋ = −ω(C sinωt+D cosωt) (21)

ẍ = −ω2(C cosωt+D sinωt) = −ω2x (22)

We can further rewrite the solution in a simpler form. By using the com-
pound angle formula, and suppose that:{

C = A cosφ

D = −A sinφ
(23)
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θO

Figure 2: A ball undergoing circular motion around the origin. The angular
displacement θ is measured from the horizontal x-axis.

Hence we have,

x(t) = A cosφ cosωt−A sinφ sinωt

= A cos(ωt+ φ)
(24)

Now the solution gives a clear physical picture: it shows that the system
would undergo a periodic motion as predicted by the time-varying trigono-
metric term. The amplitude of the motion is A, the angular frequency is
given by ω, and φ is the phase constant. A and φ are arbitrary constants,
which are to be determined by the initial conditions of the system. Now you
should understand why we used ω2 as our proportionality constant in the
previous section: it is rooted when we solve the differential equation. This
clearly shows the correlation of angular frequency of the motion to the state
of motion of the system.

5 Relationship of SHM and circular motion

Let us now consider the circular motion of a ball (point mass) moving around
the origin with a radius of A. We will denote the starting angle θ0 of the
ball as φ. At time t, the ball has moved an angle ωt, where ω is the angular
velocity of the ball. The total angle displaced, measured from the positive
x-axis direction, is (φ+ ωt). Let us try to project the ball’s motion on one
single axis: the x-axis. Since at any given time, the ball’s displacement is
given by A cos θ, we can now set-up an equation expressing the x-component
of the ball’s displacement with respect to time:

x(t) = A cos θ = A cos(ωt+ φ) (25)
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φ

ωt

O

Figure 3: A ball undergoing circular motion around the origin with an an-
gular velocity ω. The grey-coloured ball shows the initial position of the
ball. The phase angle φ shows the initial angular displacement, which is
also called the starting angle. At time t, the ball moved an angle ωt from
its initial position, measured from the origin.

Voilà! We have obtained the solution to the fundamental differential equa-
tion of simple harmonic motion! By differentiation, we can also obtain the
velocity and acceleration of the motion:

ẋ(t) = −ωA sin(ωt+ φ) (26)

ẍ(t) = −ω2A cos(ωt+ φ) (27)

You may also consider the y-component of the displacement of the ball and
obtain a similar trigonometric solution. This solution, however, is in sine
form, but you might recall me using the trick of double angle formula when
obtaining equation (24). By using a different substitution of the arbitrary
constant, you can obtain the sine solution of the differential equation (3).
We have therefore obtained the result that SHM is the linear projection of
a circular motion. This circle is called the reference circle and is extremely
useful when we deal with the complex representation of SHM.

6 Examples of Simple Harmonic Motion

As I have mentioned, simple harmonic motion is ubiquitous. Here I have
listed some common SHM examples:

6.1 Simple Pendulum

A simple pendulum is made of a point mass connected to an inextensible
massless string. The conventional symbol for the length of spring is l. There
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θ

l

Figure 4: A simple pendulum set up. It consists of a bob hanging from the
ceiling by an inextensible massless string. The angle θ should be small.

are two ways to consider the motion of a simple pendulum: Firstly, we may
try and consider the horizontal displacement of a knob. From Newton’s
Second Law, {

T cos θ = mg

T sin θ = mẍ

where T is the tension in the spring. Hence, you have,

ẍ = −g tan θ

where the negative sign is added as the force direction is opposite to the
direction of the displacement. For small angles, θ ≈ sin θ ≈ tan θ, therefore:

ẍ = −g sin θ = −g
l
x (28)

Hence we have:
ω2 =

g

l
(29)

T = 2π

√
l

g
(30)

The second method concerns the analysis of the rotational motion of the
pendulum about the pivot (where the string attaches to the roof/ceiling).
By the rotational form of Newton’s Second Law of Motion,

τ = Iθ̈ (31)

ml2θ̈ = −mgl sin θ

Again, we have to use the small angle approximation,

ml2θ̈ = −mglθ
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Figure 5: A vertical spring-mass system. Simply a rotated version of the
original spring-mass system presented in Figure 1.

Hence we have,

θ̈ = −g
l
θ (32)

We hence obtain the same result as above.

6.2 Torsional Pendulum

A Torsional Pendulum is analogous to a linear spring-mass system. It is
made up of a rotational wire with stiffness C by the restoring couple con-
nected to an arbitrary rotating body. By analysing the rotational motion
using equation (31), we obtain,

τ = Iθ̈ = −Cθ

θ̈ = −C
I
θ (33)

6.3 Vertical Spring-mass System

The vertical spring-mass system is a bit trickier due to the constant forcing
fo weight. (See Figure 5.) However, the analysis is similar. By Newton’s
Second Law, we have:

mẍ1 = −mg − kx1 (34)

Now suppose −kx = −mg − kx1, hence ẍ = ẍ1:

⇒ mẍ = −kx

ẍ = − k
m
x (35)
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θ

L

Figure 6: A ball of mass m put at the centre of a string of a length of L.
The string is under constant tension T . The displaced angle θ is assumed
to be small.

Hence the angular frequency and period of SHM is still the same as the
horizontal spring-mass system

ω2 =
k

m
(36)

T = 2π

√
m

k
(37)

6.4 Mass at centre of string under constant tension T

This system is self-explained in Figure 6. It looks like an arbitrary me-
chanical problem but SHM is still apparent here. By considering vertical
forces:

mẍ = −2T sin θ

Using small angle approximation (again), we have:

ẍ = −2T

m
tan θ

ẍ = − 2T

mL
x (38)

Hence we have:

ω2 =
2T

mL
(39)

T = 2π

√
mL

2T
(40)

6.5 Fixed length non-viscous liquid in a U-tube of constant
cross section

We will now move on to something that you may not be familiar with. Don’t
worry, the only thing here to recall from is the buoyant force:

B = ρgV (41)
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x

x
eq.pos.

Figure 7: A schematic diagram for a U-tube. This diagram shows the snap-
shot of the oscillating system when the liquid has zero velocity, i.e. maximum
displacement from the equilibrium position. The maximum difference in the
height of the two hands of the tube is 2x.

which is actually from the Archimedes’ Principle stating that the force the
applied to an object in a fluid is given by the mass of fluid displaced. A
U-tube is a device commonly used in some chemical reactions (primarily for
letting air to pass through, putting drying agent would help dry the air).
Therefore, by considering the movement of a small unit of liquid in the tube
with height x, we have:

ρAlẍ = −2ρxAg (42)

where the left-hand side of the equation is the term from Newton’s Second
Law of motion of the small volume of fluid moved, and the right-hand side
is the buoyant force acting on the small volume of fluid. (Consider the
equilibrium position and the subsequent motion of the body of liquid - you
will realise that only one half of the labeled liquid actually move; you can
consider that part of the liquid to be the only part that is in motion.) We
therefore have:

ẍ = −2g

l
x (43)

Hence we have:

ω2 =
2g

l
(44)
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T = 2π

√
l

2g
(45)

6.6 Hydrometer in liquid with density ρ

A hydrometer is a device that is used to measure the density of a fluid by
the depth it sinks into the liquid. It can be set into SHM if we push it
slightly downwards after it reaches the equilibrium position floating in a
tank of liquid, water for example. In this, we only have to consider the
buoyant force (which is the restoring force) on the hydrometer due to small
displacement of the it on the surface of water:

mẍ = −ρgAx

ẍ = −ρgA
m

x (46)

Hence we have:

ω2 =
ρgA

m
(47)

T = 2π

√
m

ρgA
(48)

As stated, there are too many examples of SHM in our world for me to
include all of them in this document. You are therefore highly encouraged
to explore more systems that undergo SHM.

7 Energy and Power in SHM

7.1 Energy Conservation in SHM

When we analyse the systems undergoing SHM, it is also important to con-
sider the energy of the system. The fact that the velocity goes to zero at the
extreme points and that it reaches the maximum at the equilibrium posi-
tion raises a very important idea about the exchange of energy between the
potential and kinetic energy. Let us start by considering the spring-mass
system:

ẍ = − k
m
x (18)

x(t) = A cos(ωt+ φ) (25)

ẋ(t) = −ωA sin(ωt+ φ) (26)

ẍ(t) = −ω2A cos(ωt+ φ) (27)

where ω =
√

k
m . By considering the elastic potential energy and kinetic

energy of the system, we have:

PE =
1

2
kx(t)2 =

1

2
kA2 cos2(ωt+ φ) (49)
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KE =
1

2
mẋ(t)2 =

1

2
mω2A2 sin2(ωt+ φ) (50)

By rewriting k = mω2, we have,

Etotal = PE +KE

=
1

2
kA2 cos2(ωt+ φ) +

1

2
mω2A2 sin2(ωt+ φ)

=
1

2
kA2 cos2(ωt+ φ) +

1

2
kA2 sin2(ωt+ φ)

=
1

2
kA2

(51)

Since both the amplitude (set by initial conditions) and the spring constant
are non time-varying, the total energy is constant. Energy is conserved in
SHM. It is converted between PE and KE. Since the total mechanical
energy is conserved, the power of the system, by taking the derivative of a
constant term, is zero.

7.2 Energy-method to obtain fundamental equation of SHM

With this result, we now are able to obtain an expression using a so-called
”energy-method”. Let us return to the simple pendulum. To use the energy-
method, we first write the expressions of energy in terms of time-varying
constants:

Etotal = PE +KE

= mgl(1− cos θ) +
1

2
Iθ̇2

=
1

2
mglθ2 +

1

2
ml2θ̇2

(52)

where I have used cos θ = 1 − 1
2θ

2 + O(θ4). By realising that the overall
power is zero, we have:

Ė = mglθθ̇ +ml2θ̇θ̈ = 0 (53)

Since θ̇ = 0 is the trivial solution, it can be ignored. By cancelling θ̇ from
both sides, we have,

−mglθ = ml2θ̈

θ̈ = −g
l
θ (32)

which is exactly as the fundamental equation obtained before.



7 ENERGY AND POWER IN SHM 15

Figure 8: An example of a potential function V (x). This potential function is
called Lennard-Jones Potential, and is fundamental to the theory of orbitals
in chemistry as it models the potential energy around the nucleus of an
atom. The constants are arbitrarily set.

7.3 Harmonic motion in a general potential well

You might wonder why we can employ such methods in finding the equation
of motion of a body. It is not very obvious to find a general potential energy
that is quadratic, for which the fundamental solution of SHM can then be
obtained. However, it is in fact true for all potential energies to have a
quadratic form which are in potential wells.
A potential well is a region in space where the potential is significantly lower
than the surrounding values. The particle is ”trapped” inside the well if it
does not have enough energy to escape the well. You might imagine a plot
of V (x) against x as in Figure 8, where V (x0) is the local minima. Let us
try to find the expression for potential energy for a small disturbance δx
around the equilibrium point x0. Using Taylor’s expansion:

V (x0 + δx) = V (x0) + (δx)
dV

dx

∣∣∣
x=x0

+
1

2
(δx)2

d2V

dx2

∣∣∣
x=x0

+
1

6
(δx)3

d3V

dx3

∣∣∣
x=x0

+ ...

= V (x0) + (δx)
dV

dx

∣∣∣
x=x0

+
1

2
(δx)2

d2V

dx2

∣∣∣
x=x0

+O((δx)3)

(54)

where I have neglected the higher order terms (expressed by the big O
notation). Since dV

dx at that point is zero by definition (local minima), we
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~x1

~x2~x3

φ1

φ2

δ

Figure 9: A vector diagram showing the addition of two solutions in vector
form. The angle δ is the angle between the two phase difference angles φ1
and φ2. The vectors can be regarded as phasors (to be mentioned later).

have:

V (x0 + δx) = V (x0) +
1

2
(δx)2

d2V

dx2

∣∣∣
x=x0

(55)

Hence,

∆V =
1

2
(δx)2

d2V

dx2

∣∣∣
x=x0

(56)

We have hence obtained that the potential change is quadratic. Since the po-
tential energy of the system is the potential multiplied by a non-time-varying
physical quantity, we have found out that the potential energy change is also
quadratic. Therefore, we can conclude that a small disturbance of a system
in a potential well would undergo SHM.

8 Superposition of SHM

8.1 Vibration having equal frequencies in one dimension

Suppose we have two solutions, x1(t) and x2(t) to an SHM equation. x3(t) =
x1(t)+x2(t), in principle, is also a solution to the equation. Therefore, to find
the resulting motion of a system under simultaneous effect of two harmonic
oscillations of equal frequencies but different amplitude and phases, we can
represent each SHM as a vector and carry out vector addition: where{

x1(t) = A1 cos(ωt+ φ1)

x2(t) = A2 cos(ωt+ φ2)
(57)
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To find the amplitude of the motion, from Figure 9, we have:

R2 = (A1 +A2 cos(φ2 − φ1))2 + (A2 sin(φ2 − φ1))2

= A2
1 +A2

2 + 2A1A2 cos(φ2 − φ1)
= A2

1 +A2
2 + 2A1A2 cos δ

(58)

where δ = φ2 − φ1. The new phase constant is given by:

tanψ =
A1 sinφ1 +A2 sinφ2
A1 cosφ1 +A2 cosφ2

(59)

The resultant SHM is hence given by:

x3(t) = R cos(ωt+ ψ) (60)

which is an SHM with an amplitude of R and a phase constant of ψ.

8.2 Vibrations having different frequencies in one dimension

Suppose now we have two harmonic oscillators with the same amplitude
but different frequency simultaneously effecting a motion (phase constant
assumed zero for simplification),{

x1(t) = A cos(ω1t)

x2(t) = A cos(ω2t)
(61)

By superposition, we have,

x3(t) = x1(t) + x2(t)

= A(cos(ω1t) + cos(ω2t))

= 2A cos(
ω1 + ω2

2
t) cos(

ω1 − ω2

2
t)

(62)

The resultant motion is represented by Figure 10. which is an oscillation
with a fast frequency and a slowly oscillating amplitude. The slower fre-
quency determines the amplitude of the oscillation we can detect, which is
given by the angular frequency (ω2 − ω1), as the absolute value of cosine
reaches maxima twice the rate it reaches maximum in its original function
(as we are talking about the amplitude here). This effect is called beats, and
is used extensive in tuning instruments by musicians.

8.3 Vibrations having the same frequency in two dimensions

Now we switch our focus to the superposition of vibrations in two dimen-
sions. Suppose we have a set-up as followed:
and let us suppose the initial position of the ball is arbitrary but small
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Figure 10: A plot of the solution x3 (blue line). For simplification, the
arbitrary constants are substituted by chosen values. The red lines represent
the change of the overall amplitude of the oscillation. It vibrates twice as
fast as the function as only the amplitude of the trigonometric function is
concerned.

enough to ensure SHM. Since SHM occurs independently on the two axes,
we may have the solutions:{

x = a1 sin(ωt+ φ1)

y = a2 sin(ωt+ φ2)
(63)

for which we can rewrite the solutions as:{
x
a1

= sinωt cosφ1 + cosωt sinφ1
y
a2

= sinωt cosφ2 + cosωt sinφ2
(64)

By eliminating ωt,

(
x

a1
sinφ2 −

y

a2
sinφ1)

2
+ (

y

a2
cosφ1 −

x

a1
cosφ2)

2
= sin2(φ2 − φ1)

(
x

a1
)
2

+ (
y

a2
)
2
− 2(

x

a1
)(
y

a2
) cos(φ2 − φ1) = sin2(φ2 − φ1) (65)

which is the general equation of an inclined ellipse. By varying the phase
difference, we would obtain different modes of vibration.
For example, when φ2 − φ1 = π

2 , we have:

(
x

a1
)
2

+ (
y

a2
)
2

= 1 (66)
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which is a general form of ellipse, with semi-major axis a1 and semi-minor
axis a2. Of course, if a1 = a2, this becomes a circle.
When φ2 − φ1 = 2πn, where n ∈ N ∪ {0}, we have:

x2

a21
+
y2

a22
∓ 2xy

a1a2
= 0 (67)

where the sign is minus when n is even and plus when n is odd. Hence,

⇒ xa1 ∓ ya2 = 0

y = ±a2
a1
x (68)

which is a straight line with a slope of±a2
a1

, depending on n. These vibrations
can be easily demonstrated on an oscilloscope.

8.4 Vibrations having different frequencies in two dimen-
sions

When the two superposing vibrations have different frequencies, things get
really complicated. These vibrations are usually represented by figures called
Lissajous figures, which are mathematically challenging and invented to
specifically analyse these vibrations. We will not go in depth here.

9 Complex representation of SHM

Let us return to the discussion of relationships between SHM and circular
motion. Let us consider the displacement, velocity and acceleration of the
solution of SHM:

x(t) = A cos(ωt+ φ) (25)

ẋ(t) = −ωA sin(ωt+ φ) (26)

ẍ(t) = −ω2A cos(ωt+ φ) (27)

where ω is the angular frequency determined by the system of interest. It
is obvious that we can rewrite the velocity and acceleration expressions:

ẋ(t) = −ωA sin(ωt+ φ) = ωA cos(ωt+ φ+
π

2
) (69)

ẍ(t) = −ω2A cos(ωt+ φ) = ω2A cos(ωt+ φ+ π) (70)

The velocity and acceleration is a phase shift of the displacement by π
2 and

π respectively (with their amplitude multiplied by ω and ω2, of course),
we can represent this result using a diagram: Figure 11 is called a phasor
diagram. This can easily simplify our analysis as all these phasors rotate
with the same frequency and hence allow us to visualise the phase difference
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~s
~v

~a

Figure 11: A phasor diagram containing the displacement, velocity and
acceleration of a simple harmonic system at a particular instant. The dis-
placement, velocity and acceleration phasors are in colours red, blue and
grey respectively. Notice that the phasors are π

2 apart, and that the velocity
and acceleration phasors have longer lengths due to the multiplication of the
angular frequency defined by the individual harmonic system.

Re

Im

z

Figure 12: A complex number z on the Argand plane.
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between different quantities of SHM.
To further simplify our analysis of SHM, I should draw your attention to
the use of complex values: In Figure 12 the complex number z = x + iy
is shown in an Argand diagram. The projection on the real and imaginary
axes are x and y respectively, and this is really useful in representing SHM -
this is analogous to the phasors as stated previously! We can simply regard
our SHM as an oscillation solely on the real or imaginary axes.
Let us first rewrite our complex number:

z = x+ iy

= A cos θ + iA sin θ

= A(cos θ + i sin θ)

(71)

By using Euler’s formula, we have:

z = A(cos θ + i sin θ) = Aeiθ (72)

Replacing θ with ωt+ φ, we have:

z = Aei(ωt+φ) (73)

Notice that we have simplified our expression to a minimal by using complex
numbers. This z number would spin around the origin with an initial phase
angle φ just as a phasor, and to recover the original solutions, we only need
to take the real (or imaginary) part of the solution:

Re{z} = Re{Aei(ωt+φ)} = A cos(ωt+ φ) (74)

So why is the use of complex numbers so useful? We may notice its signifi-
cance when we try to obtain the velocity and acceleration in the same way
as before by differentiating the displacement:

z = Aei(ωt+φ) (73)

ż = iωAei(ωt+φ) (75)

z̈ = −ω2Aei(ωt+φ) (76)

These are exactly the same when you consider the real parts as the equa-
tions stated at the start of this section. By noticing the transformation of
multiplying i to a complex number in an Argand digram (rotating it by π

2 ,
we have hence obtained the same result from phasor analysis. This, in fact,
is much simpler as we do not need to deal with the cumbersome trigono-
metric identities, especially when we consider SHM systems with multiple
oscillations (combinations of SHM).
Notice how the complex solution satisfy the complex fundamental differen-
tial equation of SHM:

z̈ = −ω2z (77)
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Let us now turn to the analysis of energy using complex numbers. Potential
energy and kinetic energy of the system can be obtained by:

PE =
1

2
kx2 =

1

2
k Re{z}2 (78)

KE =
1

2
kẋ2 =

1

2
k Im{z}2 (79)

By realising that Re{iz} = −Im{z}, we have recovered the original real
expressions:

PE =
1

2
kA2 cos2(ωt+ φ) (49)

KE =
1

2
kA2 sin2(ωt+ φ) (50)

Hence,

Etotal = PE +KE

=
1

2
k(Re{z}2 + Im{z}2)

=
1

2
k|z|2

(80)

where | z | is the modulus of the complex number, geometrically, the radius
of the vector of the complex number in the Argand diagram. This completely
agrees with our previous results since:

| z |= A (81)

where A is the amplitude of the oscillation.
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Moving on

You are now equipped with the necessary knowledge to understand some
harder physical concepts, such as damped and forced harmonic motion. To
do that, however, you must first be comfortable in solving differential equa-
tions. Please look forward to a following-up document titled ODEs and
Oscillations to be released next year. You are always welcome to ask me
any questions at lucasleung0149@gmail.com or if you just want to help me
complete my notes!

Best wishes,
Lucas Leung


