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Preface

This book arose from a summer physics course in 2020 during the height of the
Covid-19 pandemic. The aim of the course was to introduce classical mechanics
to students who were interested and capable of studying lower-division university
applied mathematics and physics. This book is a collection of the problems I have
used in example classes held once a week to allow students to practice on questions
related to topics they have just learnt in lessons.

Each chapter begins with a short summary of the theory used in solving the ques-
tions. Questions following this introduction develop the theory in more specific
contexts. These questions are often stated in a more explicit form to appeal to
students who are more familiar to the presentation styles typically used in schools.
The solutions to the problems then follows, with a restatement of problems in a
more concise form to mimic those seen in university-level texts and exams. Stu-
dents will gain a better insight of the theory if they try solving the problems first
without referring to the solutions; if they cannot solve it after numerous attempts
the solutions can then be referred and students can then learn from the experience.
Those who can solve the problems without referring to the solutions can also gain
a better insight by reading the commentary in the solutions to the problems which
often cover more general cases and arguments.

I am deeply indebted to my friends Hillman Lai, Ricky Li, Matthew Tong and
Thomas Yuen for their kind suggestions and encouragement while writing the
book. I must also thank the students who attended the course in pointing out the
numerous mistakes I have made and for attempting the first few chapters of the
books to allow a general discussion for responses to be made.

Lucas Leung
September 2020

i





Chapter 1

Elastic Collisions

One important type of questions that we did not cover in the test is related to
collisions. These questions typically require you to evoke some sort of conserva-
tion laws and you have to be really clear about what physical situations we are
talking about. In considering these problems we typically regard the system as
mechanically-isolated, so there are no-external forces acting on the system. this
gives the Conservation of Momentum as follows:

Law 1.1. (Conservation of Momentum) Linear Momentum p is conserved if there
are no external forces acting on the system such that ΣFext = 0.

Sometimes it might be explicitly stated that mechanical energy is conserved.
Another way to say this is to say the collision is elastic. Make sure you remember
these words before you continue.

1



2 CHAPTER 1. ELASTIC COLLISIONS

1.1 Questions

Question 1: First we will consider two particles (with negligible dimensionality)
elastically colliding in an isolated system. Let us suppose they have the same
mass m for now. If the first particle has an initial velocity of u and collides with
the second particle initially at rest head-on (Figure 1.1), find the final velocity of
the two particles. Is your solution unique?
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Figure 1.1: Two identical particle colliding.

Question 2: Now let us consider the two particles with different masses m1 and
m2. They are aligned head-on (You may regard the problem as 1D collisions for
now.) Suppose that the first particle has an initial speed of u while the second one
is initially at rest (Figure 1.2).

(a) Choose a convenient frame to analyse the problem. Why is this frame impor-
tant/convenient?

(b) Now obtain the velocity of the centre of mass in the laboratory frame. Trans-
form the physical quantities in this frame.

(c) Analyse the conservation laws in this frame if the collision is elastic. You
should obtain some important condition in this frame.

(d) Calculate the final velocities of the two particles in terms of m1,m2 and u.

At this stage it is useful to analyse the specific limits of the problem. Consider the
following two limiting cases,

1. m1 � m2.

2. m1 � m2.

What do they mean physically? Do they match up intuitively? Why?

Note that the analysis above also applies when the initial speed of the particles
are both not zero.
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Figure 1.2: Two particle collision in 1D.



1.1. QUESTIONS 3

Question 3: Now consider two identical disks on a frictionless table (the collision
problem becomes two-dimensional). If the collision is not head-on but elastic, show
that the balls travel at orthogonal (perpendicular) directions after the collision
(Figure 1.3).
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Figure 1.3: Two identical disks colliding in 2D plane.

Question 4: Let us analyse more on the situation I posed in Question 3. Suppose
disks are dimensionless (so you cannot calculate the scattering angle explicitly) and
have different masses. The first disk of mass m1 has, again, an initial velocity u
while the second one m2 is originally at rest (Figure 1.4). The collision is elastic.

(a) Convert the system quantities into the centre-of-mass frame.

(b) What is the condition for the final velocities for the particles if the collision is
elastic? Justify your answer.

(c) Drawing a vector diagram, show the relationship between the original velocity
vector in lab frame, the original velocity vector in COM frame and the velocity
vector of COM for both particles. Repeat the same for the final velocity,
supposing that the final velocity vectors can point to any direction of your
choice.

(d) Hence deduce the largest recoil angle of the first particle (labelled m1 in Figure
1.4) in LAB frame from the horizontal in terms of the given quantities (ψ is
the recoil angle in the COM frame/ ZMF (known as the parameter angle), see
Figure 1.4).

I will discuss a different method to analyse this problem in the class.
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Figure 1.4: Some sketches showing the set-up in Question 4. Note that the angle
ψ is the scattering angle in the COM frame/ ZMF.



4 CHAPTER 1. ELASTIC COLLISIONS

1.2 Solutions and Commentary

Note that the questions in these sections are tidier - they give you less hints on
what you should do. This is just my way of analysing questions so the answers
for individual parts may not be explicitly shown - you are left to figure that out
yourself.

Question 1: Consider two particles (with negligible dimensionality) of the same
mass m elastically colliding in an isolated system. If the first particle has an
initial velocity of u and collides with the second particle initially at rest head-on
(Figure 1.1), find the final velocity of the two particles.
Solution: This is a specific case of the following question. See the solution
below. Conserving energy and momentum should give you a solution where v1 = 0
and v2 = u, v1 and v2 being the final velocities of the two particles respectively.
The thing I want you to notice is that since we are solving a quadratic equation,
this is not mathematically the unique solution as v1 = u and v2 = 0 also satisfies
the conservation laws. You can typically physically eliminate that (since that
would mean that the particles essentially pass through each other1) but you do
have to explicitly state it out to show that you have considered that. This comes
to full effect in the next question when you consider different cases in the ZMF
(Zero-momentum Frame2).

Question 2: Consider the one-dimensional (head-on) collision of two particles
with different masses m1 and m2. Suppose that the first particle has an initial
speed of u while the second one is initially at rest (Figure 1.2). Calculate the final
velocities of the particles and analyse different limits to check your answer.
Solution: Let us analyse in the frame of centre-of-mass. This is typically known
as the zero-momentum frame (ZMF) since by construction the total momentum
in the frame is zero:

Proposition 1.1. The total momentum for a system of particles in the ZMF is 0.

Proof. The position of the centre of mass is defined as

xCOM =
ΣN
i=1mixi

ΣN
i=1mi

(1.1)

So the velocity of the COM is:

ẋCOM =
ΣN
i=1miẋi

ΣN
i=1mi

(1.2)

where ẋ = ẋiei is the 3D velocity3. Now in ZMF ẋ = 0, so ΣN
i=1miẋi = 0.

1Sometimes this might occur - in Quantum Mechanics, not here though.
2Physicists like to use this word since that explicitly states the importance of the frame. It

is synonymous to the Centre-of-mass Frame.
3Einstein Summation Convention used.



1.2. SOLUTIONS AND COMMENTARY 5

The COM velocity is

vCOM =
m1u

m1 +m2

(1.3)

so we have {
u

′
1 = m2u

m1+m2

u
′
2 = − m1u

m1+m2

(1.4)

where the prime quantities are the respective quantities in the ZMF. Now we evoke
the conservation laws. Conservation of energy and momentum gives:{

1
2
m1u

′2
1 + 1

2
m2u

′2
2 = 1

2
m1v

′2
1 + 1

2
m2v

′2
2

m1u
′
1 +m2u

′
2 = m1v

′
1 +m2v

′
2 = 0

(1.5)

The second equation gives u
′
2 = m1

m2
u

′
1, etc. So simplifying gives

u
′2
1 = v

′2
1 (1.6)

which can be written as

|u′

1| = |v
′

1| (1.7)

and similarly

|u′

2| = |v
′

2|

. The speed of the particles in ZMF is conserved. Now we evoke the argument we
used in the previous question - if the signs of the velocities are conserved then the
particles would simplify“pass through” one another. So we set u

′
i = −v′

i, where
i = 1, 2. Then {

v
′
1 = − m2u

m1+m2

v
′
2 = m1u

m1+m2

(1.8)

Transforming back to lab frame gives{
v1 = m1−m2

m1+m2
u

v2 = 2m1

m1+m2
u

(1.9)

Now we check the limits. When m1 � m2 we have{
v1 = −u
v2 = 0

(1.10)

which makes sense if you consider a particle elastically hitting the wall4. When
m1 � m2 we have {

v1 = u

v2 = 2u
(1.11)

4Something to think about when you consider ideal gases.



6 CHAPTER 1. ELASTIC COLLISIONS

The first velocity makes sense - it is like there is no interference to the motion of
the first particle to the second particle due to the mass difference. The second
result however is quite surprising - it is not infinite5!
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Figure 1.5: Sketches for the solution for Question 2.

Question 3: Consider two identical disks on a frictionless table (the collision
problem becomes two-dimensional). If the collision is not head-on but elastic, show
that the balls travel at orthogonal (perpendicular) directions after the collision
(Figure 1.3).
Solution: The trick to use here is to draw a vector diagram. To conserve mo-
mentum, we need v1 + v2 = u.
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Figure 1.6: Vector diagram for 2D elastic collision.

Now conserving energy requires u2 = v2
1 + v2

2. Reverse of Pythagoras’ Theorem
gives the π

2
argument.

5Actually, if you sit down and think about it - it physically makes sense. Just transform the
problem into the COM frame and you will obtain something similar to a moving wall colliding
with a stationary particle. In wall’s frame, the particle has a velocity −u so it rebounces, in this
frame, with velocity u. Transforming to lab frame gives 2u.



1.2. SOLUTIONS AND COMMENTARY 7

Question 4: Consider a 2D elastic collision of dimensionless particles. The first
particle of mass m1 has, again, an initial velocity u while the second one m2 is
originally at rest (Figure 1.4). Find the maximum recoil angle θ1 of the first mass
after the collision. Find also the relationship between the scattering angle φ and
the parameter angle ψ.

Solution: One person asked why I want to particles to be dimensionless. This
is to allow the parameter angle ψ become a free variable so you cannot guess that
from the geometry6. From Question 2 we have that

|u′

i| = |v
′

i|

for i = 1, 2 in the ZMF. Draw a vector diagram for the final velocities as follows.
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Figure 1.7: Vector diagram for dimensionless 2D elastic collision.

To maximise θ1, the recoil angle for the first particle, we must consider different
cases. When |v′

i| > |v
′
COM |, the maximum recoil angle is obvious - it is backwards

and ⇒ θ1 = π. So we consider the case |v′
i| < |v

′
COM |. The maximum recoil angle

is reached when vector v1 is orthogonal to vector v
′
1
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Figure 1.8: Condition for maximum θ1 in the case of |v′
i| < |v

′
COM |.

so

θ1 = sin−1(
v

′
1

vCOM
) = sin−1(

m2

m1

) (1.12)

6This is actually an interesting exercise. Set the disks to have a radius R and suppose
originally their centres are separated by a distance d < 2R. Calculate the parameter angle ψ by
using law of reflection.



8 CHAPTER 1. ELASTIC COLLISIONS

Now let us find the relationship between the scattering angle φ and the param-
eter angle ψ. From Figure 1.7 we have

tan θ1 =
v1 sinψ

v1 cosψ + vCOM
(1.13)

tan θ2 =
v2 sinψ

−v2 cosψ + vCOM
(1.14)

We can further simplify this. Notice that |v′
2| = |vCOM |. So 4OBC is isosceles

and

θ2 =
1

2
(π − ψ) (1.15)

Therefore, it follows that

tan θ2 = cot
ψ

2
(1.16)

Substitution for the velocities give

tan θ1 =
sinψ

cosψ + m1

m2

(1.17)

So the scattering angle is
tanφ = tan(θ1 + θ2) (1.18)

Here you can use the t-substitution t = tan ψ
2
:

sinψ = 2 sin ψ
2

cos ψ
2

= 2t
1+t2

cosψ = 2 cos2 ψ
2
− 1 = 1−t2

1+t2

tanψ =
2 tan ψ

2

1−tan2 ψ
2

= 2t
1−t2

(1.19)

Then we have

tanφ =
m1 +m2

m1 −m2

cot
ψ

2
(1.20)

You can check that the maximum scattering angle is π, neglecting any relativistic
effects. This matches up with our expectations.

1.3 Take-home skills

The skills that you should now know is:

1. Checking Conditions.

2. Using ZMF in collision problems.

3. Understanding the importance of vector diagrams in analysing problems.



1.4. RESPONSE COMMENTS 9

1.4 Response Comments

General Comments

1. Q1: In general the discussion of the uniqueness condition is not clear. My
fault on setting the question in an ambiguous way.

2. Q2: Most people successfully obtained the answer. Surprisingly, some thought
the COM frame allows the “exchange” of velocities which is wrong - if you
evoke conservation laws in this frame you will check that this is incorrect.
For that some marks are deducted (although they all got the correct answer
in the end...?) Intuitive descriptions are expected in the limiting case part.
The best answers sketched out why they think the limit cases made sense.

3. Q3: Nobody did the question correctly. Some got really close, and two evoked
some argument from the conditions in Q2 in the ZMF although they are now
working in the Lab frame.

4. Q4: Generally poor attempts. Some did’t even try to copy their correct an-
swers from Q2 (Two marks missed there!) and did not attempt the question
at all. Others drew ambiguous vector diagrams that are incorrect. One got
very close with the correct vector diagram but then digressed into something
else.

5. In general this exercise is attempted to my expected standards. An approx-
imate bimodal distribution can be deduced - which can be attributed to
the HKDSE-level training that S4 students experience. For S3 students the
exercise is a good challenge but hopefully they will learn more from that.

(Updated by Lucas on 25th July, 2020)





Chapter 2

Ladders, Blocks and Stability

In high-school physics you should have learnt about the conditions for mechanical
equilibrium. Here is an elementary definition.

Definition 2.1. An object in mechanical equilibrium satisfies:

ΣFext = 0 (2.1)

ΣGext = 0 (2.2)

In the first Newtonian Mechanics lecture I gave, I also described how mechanical
stability can be analysed in terms of the curvature of the potential energy function.
You should recall the following:

Definition 2.2. Suppose an object has a potential energy function V (x) in 1D.
If d2V

dx2
(x0) > 0, the object is said to be in stable equilibrium at x = x0. If

d2V
dx2

(x0) < 0, the object is said to be in unstable equilibrium at x = x0.

In this example class we will primarily investigate how mechanical stability
can be analysed without referring to the potential energy function. This relies on
drawing accurate force diagrams. We will primarily analyse two kinds of systems
seen everywhere in physics - ladders and blocks.

11



12 CHAPTER 2. LADDERS, BLOCKS AND STABILITY

2.1 Questions

Question 5: We will start with an extremely easy question. Consider a block of
mass m and dimensions a× a× b (b > a) put on a rough slope as shown in Figure
2.1.

(a) Draw a representative free body diagram for the block.

(b) What is the maximum angle that the block can be in stable equilibrium (You
can move the block)? You may assume that the static friction coefficient µs is
infinitely large to neglect any sliding motion of the block.

(c) Thomas and Lucas are good friends. Thomas is 6 ft tall and Lucas is 5’6”. You
may assume here they can be modelled as blocks (with the same base area to
first order correction). Say they are climbing a slope. Which of them is more
likely to fall if they suddenly stand still (their whole body is orthogonal to the
slope)? Why?

(d) Now assume the same block placed on the ground with the square-side touching
the ground (Figure 2.2). Find the conditions such that the block just slides
and just topples respectively if a force F is given at the tip. The static friction
coefficient between the block and the flat surface is µ0.

*8lA- S^.4ir^-

3n^G6TtL

Figure 2.1: A 2D representation of a block put on a rough incline. The block is
not fixed and you can move the block.

*8lA- S^.4ir^-

3n^G6TtL

Figure 2.2: The same block is put on a rough surface with a force F acted on it.
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Question 6: Consider a cuboid put on a hemisphere of radius R (Figure 2.3).
We wish to find the conditions for the dimensions of the block for which the block
is in stable equilibrium.

(a) Suppose the block is perturbed by a small angle θ. Draw a force diagram for
the block at this angle. [Hint: notice that the contact point of the two objects
is no longer the centre of the side! ]

(b) Using your knowledge from elementary physics analysis, draw a force diagram
with a representative dimension of the block. Then obtain the condition for the
block to not topple over.[Hint: Something to do with centre of mass perhaps? ]

*8lA- S^.4ir^-

3n^G6TtL

Figure 2.3: A cuboid put on a hemisphere of radius R. The perturbation angle is
shown as θ.

Question 7: N identical blocks of length L, width W and height H. They are
stacked together at the edge of the table such that they are just about to topple
(Figure 2.4). The extension length l0 is defined as the length from the edge of the
table to the outer edge of the block furthest away from the table. Find l0 when
N = 4. Describe the behaviour when N →∞.

*8lA- S^.4ir^-

3n^G6TtL

Figure 2.4: N blocks are stacked on top of each other such that the topmost block
is placed furthest away from the table. Here N = 4.



14 CHAPTER 2. LADDERS, BLOCKS AND STABILITY

Question 8: A ladder of uniform density (mass per unit length) ρ and length L
is leaning against the wall.

(a) Suppose the surface between the ladder and the wall is smooth while that
between the ladder and the ground is rough. If the static friction coefficient
between the ladder and the ground is µ, find the smallest angle φ that the
ladder can make with the ground and not slip (Figure 2.5).

*8lA- S^.4ir^-

3n^G6TtL

Figure 2.5: Ladder leaning against the wall. The surface between the ground and
the ladder is rough while that between the ladder and the wall is smooth.

(b) Suppose now the surface between the ladder and the wall is rough while that
between the ladder and the ground is smooth. Suppose the ladder is just
about the slide against the wall. If the static friction coefficient between the
ladder and the wall is µ, and a string attaches from the centre of mass, find
the tension in the string (Figure 2.6).

*8lA- S^.4ir^-

3n^G6TtL

Figure 2.6: Ladder leaning against the wall. The surface between the ground and
the ladder is smooth while that between the ladder and the wall is rough. A string
connects from the centre of mass to the corner of the wall and ground.

(c) Suppose now all surfaces are rough. Try drawing a force diagram and describe
why force analysis cannot be performed here. [Hint: Count the degrees of
freedom in the question.]

Question 9: A uniform ladder of mass m and length L is leaning against the
wall. All surfaces are smooth. Denote the point on the ladder in contact with the
wall as P. The starting angle that the ladder makes with the wall is θ0 (Figure
2.7 and 2.8). If you are not familiar with rigid body dynamics, you are allowed to
treat the ladder as a massless rod connected to two small spheres at its ends with
masses m

2
. You are allowed to choose one of the following methods.



2.1. QUESTIONS 15

I

,9t\&^-

n.lf4 Y.rorlc.s rG'l
g"

Figure 2.7: A model of a ladder leaning against the wall. All surfaces are smooth.

(I) (HKPhO-level) This method does not require the use of calculus or rigid
body-dynamics (Figure 2.7).

(a) Find the kinetic energy and potential energy of ladder. Using conser-
vation of energy, find an expression that links the velocities of the end
masses vbx (bottom, horizontal), vay (upper, vertical) and the angle θ.

(b) The rod is a rigid body. What condition must the rod satisfy at all
times?

(c) Using the relation in (b), hence obtain an equation linking the horizontal
velocity of the bottom particle vbx and the angle θ.

(d) What is the condition for point P (of the rod) to detach from the wall?

(e) Using the fact that the maximum of the function y(x) = Ax2(a− x) is
at x = 2

3
a, where A and a are constants, find the respective angle for

which the ladder detaches from the wall.

(II) (semi-HKPhO level) This method can be done with a bit of calculus and
your HKPhO knowledge (Figure 2.7).

(a) Find the kinetic energy and potential energy of ladder. Using conser-
vation of energy, find an expression that links the velocities of the end
masses vbx (bottom, horizontal), vay (upper, vertical) and the angle θ.

(b) The rod is a rigid body. What condition must the rod satisfy at all
times?

(c) Using the relation in (b), hence obtain an equation linking the horizontal
velocity of the bottom particle vbx and the angle θ.

(d) What is the condition for point P (of the rod) to detach from the wall?

(e) Obtain a relation that links the x-position of the bottom particle and
the angle θ. Hence express the equation and condition found in part (c)
and (d) respectively as a functional1 of θ and its derivatives.

(f) Differentiating the equation in (c) (as a functional of θ) with respect to
t, find the equation of motion of the system. Using this equation, and
the two from part (e), find the angle for which the ladder detaches from
the wall.

1This means a function of functions.
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(III) (Standard Method) This requires rigid body dynamics and calculus. Don’t
do it unless you are hundred-percent sure what you are doing (although I
would have chosen to do this when I was your age).

(a) Find the moment of inertia of the ladder about its centre of mass.

(b) Find the kinetic energy and potential energy expressions of the rod when
the angle between the ladder and the wall is θ. You can take any
reference points you like for the potential energy expression but make
sure you state it.

(c) Find the relationships between the centre of mass coordinates x and y
and the angle θ.

(d) Using the fact that energy is conserved, obtain a relation linking θ with
its derivative with time.

(e) Either perform a force analysis2 of the problem or continue using the
conservation of energy you are using. Obtain an equation of motion of
the system.

(f) Find the physical condition for the ladder to detach from the wall. Hence
find the angle for this to occur.

Figure 2.8: Ladder leaning against the wall. All surfaces are smooth.

2You must state why your equations are valid if you obtain them in a non-inertial frame.
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2.2 Solutions and Commentary

Question 5: Consider a block of mass m and dimensions a×a×b (b > a) put on
a rough slope as shown in Figure 2.1. What is the maximum angle that the block
can be in stable equilibrium? If the same block is then placed on the ground with
the square-side touching the ground (Figure 2.2), find the conditions such that the
block just slides and just topples respectively if a force F is given at the tip. The
static friction coefficient between the block and the flat surface is µ0.

Solution: This is a rudimentary problem on statics and the equilibrium condi-
tion. The main thing I would like you to know is that in analysing these stability
questions, the normal reaction on your body need not be situated at the middle of
the contact surface, but can be theoretically moved to any contact point depending
on the situation we are in. We start by drawing free body diagrams of the box.
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(a) Short side as base.
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(b) Long side as base.

Figure 2.9: Free-body diagram of the box at the critical point with two configura-
tions.

Here f is the static frictional force experienced by the block. First consider
Figure 2.9a. By considering the equilibrium conditions, we can deduce that the
block is just about to topple when the centre of mass is just above the lower end
of the block (point P in Figure 2.10). This therefore gives the condition:

tan θ =
a

b
(2.3)
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-3
G)

(?+
F

+

)

Figure 2.10: Free-body diagrams of the blocks as θ is increased. Let us consider
the balance of moments at the lowest corner of the block (point P). 1○: When θ is
zero, the normal force is antiparallel to the weight and it passes through the centre
of mass of the block. 2○: As we increase θ, the weight gives a clockwise moment
at point P. Since the frictional force does not contribute to the external torque at
P, for the block to be in equilibrium, we require the normal force to provide an
anticlockwise moment at P. 3○: The critical condition is reached when the centre
of mass is directly on top of point P and the normal reaction reaches the edge.
4○: If θ is further increased, we would require the normal reaction to be outside

the box to balance the anticlockwise moment caused by the weight. This is not
physically possible, so the block topples over.

However, we have not considered all cases. If we consider the second case
illustrated in Figure 2.9b, we will find that the condition for the box to just not
topple as

tan θ =
b

a
(2.4)

Comparing Equations 2.3 and 2.4 with b > a gives Equation 2.4 as the final
condition. It is therefore evident that a shorter person is better at balancing3.
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Figure 2.11: Force diagram of the block when acted by a force F .

Now consider the block put on a rough flat surface. For the block to just about
to slide, we take the largest value possible for the static friction. So, balancing

3Apparently the only good thing for short people like me.
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forces give

Fslide = µmg (2.5)

When the block is about the topple, the normal reaction is displaced so it is at
the far corner of the lower surface of the block. Balancing moments at that point
gives

Ftopple =
mga

2b
(2.6)

Question 6: Consider a cuboid put on a hemisphere of radius R (Figure 2.3).
Find the conditions for the dimensions of the block for which the block is in stable
equilibrium.

Solution: Suppose a cuboid of height h is perturbed from equilibrium by a small
angle θ. Assume that the block does not slip during this process. Then drawing a
diagram at this perturbed position:
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Figure 2.12: Force diagram for the block of height h perturbed by a small angle θ.
The blue arrow indicates the weight vector of the block.

Making a similar analysis from Figure 2.10, we can deduce from Figure 2.12
that the critical condition occurs when the centre of mass is just above the contact
point. From Figure 2.12 we have for stable equilibrium:

tan θ <
2Rθ

h
(2.7)

Using small angle approximation θ ≈ tan θ, we have

h < 2R (2.8)

This is the condition for stable equilibrium.

Potential energy function Another way of analysing the problem is to write
out the potential energy function.
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r

:

I

Figure 2.13: Detailed lengths in the block-hemisphere problem.

From Figure 2.13, we can write:

V =
h

2
cos θ +Rθ sin θ −R(1− cos θ) (2.9)

where V is normalised by mg (i.e. U = mgV ). Now we use the small angle
approximation, {

sin θ = θ + o(θ2)

cos θ = 1− 1
2
θ2 + o(θ2)

(2.10)

Notice that we have truncated the series at second-order terms as we would like
to differentiate the function by two times. This gives

V =
h

2
(1− θ2

2
) +R

θ2

2
(2.11)

According to Definition 2.2, we differentiate V with respect to θ to give:

dV

dθ
= −hθ

2
+Rθ = 0 (2.12)

so equilibrium occurs at θ = 0. Now differentiate again with respect to θ gives:

d2V

dθ2
= −h

2
+R (2.13)

For stable equilibrium we want d2V
dθ2

> 0 so this evaluates to

h < 2R (2.8)

as before.
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Question 7: N identical blocks of length L, width W and height H. They are
stacked together at the edge of the table such that they are just about to topple
(Figure 2.4). The extension length l0 is defined as the length from the edge of the
table to the outer edge of the block furthest away from the table. Find l0 when
N = 4. Describe the behaviour when N →∞.

Solution: Begin our analysis from the topmost block. There are only two forces
acting on the system, the weight and the normal reaction. To satisfy the conditions
in Equation 2.1, we require the two to be antiparallel and pass through the centre
of mass of the block (Figure 2.14). If we now consider the next block, for the block
to be positioned the furthest out, the reaction normal force N1 must then act on
the edge of the next block. By Equation 2.1, you can compute the location of N2

4.
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Figure 2.14: Diagram for the first two blocks. Blue arrows are forces acting on the
first block, black arrows are for that acting on the second block. Note that this is
not a valid force diagram.

We analyse the general condition for the system. Consider the (N+1)th block.
We can draw the force diagram as follows:
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oFigure 2.15: Force diagram of the (N+1)th block.

Suppose the reaction force pointing upward is x from the centre of mass of this
block. Equation 2.1 gives

(N + 1)mgx = Nmg
L

2
(2.14)

Solving for x gives:

x =
N

N + 1

L

2
(2.15)

4Another way of seeing this is that we require any upper subsystem (that includes the entire
collection of blocks above, say the Nth block from the top) to have a centre of mass lying at most
at the edge of the immediate block below it.
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The distance l that Nth block can be displaced is:

l =
L

2
− x =

L

2(N + 1)
(2.16)

So for the N blocks, the extension length l0 is:

l0 =
L

2

N∑
k=1

1

k
(2.17)

For N = 4, this evaluates to l0,N=4 = 25L
24

. When N →∞, Equation 2.17 becomes:

l0 =
L

2

∞∑
k=1

1

k
(2.18)

The right-hand side contains a harmonic series and has no finite limit. The blocks
can be extended to infinity.
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Question 8: A ladder of uniform density (mass per unit length) ρ and length L
is leaning against the wall.

(a) Suppose the surface between the ladder and the wall is smooth while that
between the ladder and the ground is rough. If the static friction coefficient
between the ladder and the ground is µ, find the smallest angle φ that the
ladder can make with the ground and not slip (Figure 2.5).

(b) Suppose now the surface between the ladder and the wall is rough while that
between the ladder and the ground is smooth. Suppose the ladder is just
about the slide against the wall. If the static friction coefficient between the
ladder and the wall is µ, and a string attaches from the centre of mass, find
the tension in the string (Figure 2.6).

(c) Suppose now all surfaces are rough. Describe why force analysis cannot be
performed here.

Solution: First consider the case where only the floor is rough. The force dia-
gram of the ladder is:
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Figure 2.16: Force diagram of the ladder when only the floor is rough.

Equation 2.1 gives 
N1 = mg

f1 = N2

N2L sin θ = mgL
2

cos θ

(2.19)

taking the reference point for torques at the point of contact of the ladder and the
ground. Simplifying and using the condition f1 ≤ µN1 gives

tan θ ≥ 1

2µ
(2.20)

The required smallest angle can hence be found.
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I

*3

Figure 2.17: By considering the ladder as the diameter of the circle, circle geometry
gives that the string has a length equal to the radius of this circle (the reference is
converse of ∠ in semicircle).

Now consider the case where only the wall is rough. Circle geometry gives that
the length of the string be L

2
(see Figure 2.17). The force diagram of the ladder is

I

*3

Figure 2.18: Force diagram of the ladder when only the wall is rough.

Equation 2.1 gives
T cos θ = N2

N1 + f2 = mg + T sin θ

mgL
2

cos θ + T L
2

sin 2θ = N1L cos θ

(2.21)

taking the reference point for torques at the point of contact of the ladder and the
wall (point P in Figure 2.18). Using f2 = µN2 (just about to slip) and simplifying
gives

T =
mg

2µ cos θ
(2.22)

For the last case where all surfaces are rough, the force diagram is:

I

*3

Figure 2.19: Force diagram of the ladder when all surfaces are rough.
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Notice that typically we have the friction coefficients as constants. So the free
variables of the system are N1, N2. However, the problem arises when we set our
conditions. If I say the ladder is about to slip, which contact point does it refer to?
This introduces a third degree of freedom. The fourth degree of freedom comes
from the uncertainty in the direction of f2. So in general, we have at least four
degrees of freedom with three equations to solve - a family of solution is obtained
rather than a unique one.

Question 9: A uniform ladder of mass m and length L is leaning against the
wall. All surfaces are smooth. Denote the point on the ladder in contact with the
wall as P. The starting angle that the ladder makes with the wall is θ0 (Figure
2.20). Find the angle when the ladder detaches from the wall.

Figure 2.20: Ladder leaning against the wall. All surfaces are smooth.

Solution: Honestly I did not know how hard this question is until I tried it
myself! This is actually a very standard question taught in universities but I have
neglected the fact that you need to fully understand rigid body dynamics to do
the question. However, with suitable hints, it can be reduced to a HKPhO-level
question. I have presented 3 ways of tackling the problem and I will go through
all of them here.

I

,9t\&^-

n.lf4 Y.rorlc.s rG'l
g"

Figure 2.21: A model of a ladder leaning against the wall. All surfaces are smooth.

Method I We begin with standard HKPhO analysis (refer to Figure 2.21, we
treat the ladder as a rigid massless rod connected to two balls of mass m

2
). It is

obvious that here you should use conservation of energy5. So using conservation

5I say obvious - it is because years of intuition make me think so. But you will soon realise
there are not really other choices.
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of energy:
1

2
mgl(cos θ0 − cos θ) =

1

4
m(v2

bx + v2
ay) (2.23)

which reduces to

2gl(cos θ0 − cos θ) = v2
bx + v2

ay (2.24)

Note that any horizontal motion of ball A can be ignored since the ball remains
falling vertically until it is detached from the wall. Since the rod is a rigid body,
every point of the rod (including the balls) must have the same motion (except
motion about the centre-of-mass, for example circular motion about the centre of
mass). This means that the velocity along the rod must be the same, and we have
the condition:

vay cos θ = vbx sin θ (2.25)

which reduces to

vay = vbx tan θ (2.26)

When ball A detaches from the wall, the normal reaction between ball A and the
wall disappears. This is because the outward force provided by the rod disappears
as the rod is no longer compressed. As the rod starts to contract, the horizontal
acceleration at that point is zero. In other words, v2

bx reaches it maximum at this
moment. Combining Equation 2.24 and 2.26 gives (tan2 θ + 1 = sec2 θ)

v2
bx = 2gl cos2 θ(cos θ0 − cos θ) (2.27)

All we have to do is minimise Equation 2.27 at this point. Luckily we know that
the maxima of function y(x) = 2glx2(a− x) is at x = 2

3
a. (To check, differentiate

y(x) and set it to zero.

dy

dx
= 4glx(a− x)− 2glx2 = 0

You can check that this is a maxima by invoking the second derivative rule.) So
we can immediately put down the condition for detachment.

cos θ =
2

3
cos θ0 (2.28)

The angle of detachment can hence be found.

Method II Now let us use a bit of calculus. The first steps are identical to the
first method. First obtain an equation from conservation of energy:

1

2
mgl(cos θ0 − cos θ) =

1

4
m(v2

bx + v2
ay) (2.23)

which reduces to

2gl(cos θ0 − cos θ) = v2
bx + v2

ay (2.24)
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At this point, again use the fact that the rod is a rigid body. Then it follows that
the velocities along the rod are the same:

vay cos θ = vbx sin θ (2.25)

which reduces to
vay = vbx tan θ (2.26)

Combining Equation 2.24 and 2.26 gives (tan2 θ + 1 = sec2 θ)

v2
bx = 2gl cos2 θ(cos θ0 − cos θ) (2.27)

At this point the analysis departs from the intuitive argument in Method I. Denote
the position of ball B by x. Simple trigonometry gives

x = l sin θ (2.29)

Consider the entire ladder as a system. The only force causing horizontal accelera-
tion is the reaction force on ball A acted by the wall (remember the pulling/stretching
force of the rod is internal to the system!). When the ladder detaches from the
wall, this reaction force is zero so the horizontal acceleration of the system is zero.
Since the centre of mass and ball B is fixed on the same rod (same horizontal
acceleration), we have the condition

ẍCOM = ẍ = 0 (2.30)

Differentiating Equation 2.29 gives

ẋ = l cos θθ̇ (2.31)

ẍ = −l sin θθ̇2 + l cos θθ̈ = 0 (2.32)

so we have the condition for detachment as:

ẍ = tan θθ̇2 (2.33)

Using Equation 2.31 on 2.27, where vbx = ẋ, we have

θ̇2 =
2g

l
(cos θ0 − cos θ) (2.34)

Differentiating Equation 2.34 by time gives:

θ̈ =
g

l
sin θ (2.35)

Now we have θ, θ̇ and θ̈ as variables. Using Equations 2.33, 2.34 and 2.35 reduces
to the angular condition for detachment

cos θ =
2

3
cos θ0 (2.28)

as found in Method I.
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Method III - Energy Method This is the most standard method to solve the
problem. The moment of inertia of the rod is I = 1

12
mL2. To obtain this, suppose

the density of the rod is ρ = m
L

. Then, calculation of moment of inertia proceeds
as follows:

I =

ˆ
r2dm =

ˆ L
2

−L
2

ρx2dx =
1

12
mL2 (2.36)

The coordinates of the centre of mass is at (x, y) = (L
2

sin θ, L
2

cos θ). Using con-
servation of energy, we have:

1

2
mgl(cos θ0 − cos θ) =

1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 (2.37)

Simplifying and using that (ẋ, ẏ) = (L
2
θ̇ cos θ,−L

2
θ̇ sin θ) gives:

θ̇2 =
3g

L
(cos θ0 − cos θ) (2.38)

To obtain the equation of motion of the system, note that conservation of energy
implies that Ė = 0. This is known as the energy method. Differentiating Equation
2.38 gives:

θ̈ =
3g

2L
sin θ (2.39)

Similar to the above analysis, note that the horizontal acceleration at detachment
is zero, i.e. ẍ = 0. So we have, similar to that obtained in Method II,

ẍ = −1

2
l sin θθ̇2 +

1

2
l cos θθ̈ = 0 (2.40)

giving

ẍ = tan θθ̇2 (2.41)

Using Equations 2.38, 2.39 and 2.41 gives the condition

cos θ =
2

3
cos θ0 (2.28)

as found in Method I and II.

Method IV- Force Analysis There are other ways to obtain the equation of
motion 2.39. One such way is to analyse the forces and torques acting on the
system (about the centre of mass6).

6You can ignore the fact that the system is accelerating in considering torques about the
COM - the fictitious force acts on the COM!
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Figure 2.22: Force diagram of ladder for all smooth surfaces.

Consider the force diagram in Figure 2.22. Using Newton’s Second Law:
N1 −mg = mÿ

N2 = mẍ
L
2
N1 sin θ − L

2
N2 cos θ = Iθ̈ = 1

12
mL2θ̈

(2.42)

Eliminating unknowns give

g sin θ + ÿ sin θ − ẍ cos θ =
1

6
Lθ̈ (2.43)

Now using the coordinates of the centre of mass (x, y) = (L
2

sin θ, L
2

cos θ), we have:{
ẍ = 1

2
Lθ̈ cos θ − 1

2
Lθ̇2 sin θ

ÿ = −1
2
Lθ̈ sin θ − 1

2
Lθ̇2 cos θ

(2.44)

Substituting into Equation 2.43 gives

θ̈ =
3g

2L
sin θ (2.39)

as obtained in Method III. Proceed with another steps in Method III to obtain the
final answer.

Method V - Lagrangian Mechanics More commonly used in the field is the
Lagrangian Method. We write the Lagrangian L as:

L = T − V (2.45)

where T and V are the kinetic and potential energy respectively. For this system,
we can write:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
mgL cos θ (2.46)

Using Euler-Lagrange’s Equation:

d

dt
(
∂L

∂θ̇
) =

∂L

∂θ
(2.47)

we have

θ̈ =
3g

2L
sin θ (2.39)

as obtained in Method III.



30 CHAPTER 2. LADDERS, BLOCKS AND STABILITY

2.3 Take-home skills

The skills that you should now know is:

1. Conditions for equilibrium

2. Moving the reaction force in stability questions.

3. The importance of counting degrees of freedoms in questions.

4. The energy method
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2.4 Response Comments

General Comments

1. Q5: Generally well-answered. The reason why people get this question wrong
is typically because of the confusing choice of words I have used.

2. Q6: This is quite hard on itself, but I think I have given enough hints to
allow most people to successfully finish the question.

3. Q7: This is generally really hard. I actually did not calculate the positions of
the centre-of-mass. but most people who successfully computed the answer
used that method. I have a slight worry that this might have been a canonical
solution on some webpages (this is a canonical question after all) and people
simply copied it down but I think reading these solutions is still helpful for
you to learn more on the subject so I am fine with that.

4. Q8: Most people finished (a) and (b) successfully. (b) requires to use of a
proof for the angle that the string makes with the horizontal and S4 students
are more likely to successfully argue that using circle geometry. YA trigono-
metric argument is also permissible. (c) is a very hard one and no-one got
close to it. This is perhaps something that requires a deep intuition on the
subject and requires complete knowledge on “degree of freedom”.

5. Q9: This is a complete disaster. Only one person successfully finished the
question as he had seen the question in a test in PEP before. S4 students
mostly chose Method II which is very difficult when Method I is mathemat-
ically straight-forward. Some entirely skipped the question.

6. Overall: The stability condition is better understood by S4 students than S3
students. However, sometimes the physical intuition on that is still lacking
and perhaps this is a useful topic to dig into in their own time.

(Updated by Lucas on 7th August, 2020)





Chapter 3

Non-inertial Frames

In the real world things are not usually in equilibrium. In the classical study
of dynamical behaviour of masses, we use the Newton’s Laws of Motion, which
most of you should vividly recall from your elementary mechanics courses. That
is concisely stated out here.

Law 3.1. Newton’s Laws of Motion state the following.

(I) If no net force acts on a body it will move in a straight line at constant speed
(or remain at rest if originally at rest).

(II) The net force and acceleration of an object is proportionally related.

Fnet ∝ a

(III) For every force exerted by an object A on B, there is a force acting on B by
A that is equal and opposite.

FA→B = −FB→A

A reference frame is a reference system in observing a motion in physics. Note
that not all frames of references imply that (I) is true. We therefore define a set
of reference frames as inertial frames as follows.

Definition 3.1. There exists a class of preferred reference systems called inertial
frames which Newton’s First Law holds.

Frames that do not belong to this set are called non-inertial frames. In this ex-
ercise, we will try and talk about how to analyse systems in a non-inertial frame. In
classical mechanics, we use the Galilean Transformation in transforming between
inertial frames of reference.

33
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Definition 3.2. (Galilean Transformation) Suppose we have two inertial frames
S and S ′ in standard configuration, i.e. their origins coincide at t = t′ = 0 and S ′

moves with velocity v with respect to S in the x-direction. Then the coordinates of
an event P transforms as follows:

t′ = t

x′ = x− vt
y′ = y

z′ = z

(3.1)

The reverse transform is obtained by substituting v by −v. This is known as the
Galilean Transformation.

Transformations in Newtonian mechanics do not preserve acceleration1 across
frames, nor does it regard acceleration as an absolute quantity2. So, in transform-
ing from an inertial frame to a non-inertial frame, we require a fictitious force.
Here I will teach you how to generate this fictitious force in one of the examples.
You are encouraged to then use the concept to answer the remaining problems.

1This is to say that acceleration is not invariant in Newtonian Mechanics.
2This means that all observers agree upon whether a body is accelerating. This is not true

in Special Relativity, where acceleration is absolute across all frames.
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3.1 Questions

Question 10: Let us consider a ball hung on the top of the ceiling of a train
by an ideal string. The train is accelerating with a constant acceleration a. The
angle that the string makes with the vertical is θ (Figure 3.1). We wish to find the
relationship between the angle and the acceleration.

,'lt t"ta

Figure 3.1: A ball hanging on the top of the ceiling of an accelerating train.

(a) Analyse the problem using Newtonian Mechanics in an inertial frame that is
simultaneously travelling at the same speed with the train. You should first
draw a correct force diagram, then use Newton’s Second Law in some directions
of your choice.

(b) Consider a general inertial frame S0 and a non-inertial frame S. Suppose in
frame S0 we have mr̈0 = F, where r0 is the position vector3 of a particle in
S0. Suppose the position vector r in frame S is related to that of frame S0 by

r = r0 −R

where R is a general vector. Find the acceleration of the particle in frame
S. Hence show that the actual force in the non-inertial frame S includes the
actual force F and a fictitious force. Explicitly show the general form of a
fictitious for a non-inertial frame.

(c) Hence for the special case R̈ = 0, find the apparent force in S. What does this
case represent?

(d) Solve the problem in the first part by analysing inside the accelerating frame
of the train.

Question 11: Two blocks are stacked on top of each other on a frictionless plane.
The upper block has mass m and is lying at the edge of the lower block of mass
M . The static and kinetic coefficients of friction between the masses are µs and
µk respectively. A horizontal force F is exerted on the upper block (Figure 3.2).

3A position vector in frame S is a vector that denotes the position of the particle in a reference
frame. The vector is defined to be drawn from the origin of S to the position P of the particle
in frame S.
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(a) Draw the force diagrams of the blocks.

(b) The horizontal force is increased slowly from 0. Find the maximum force Flim
such that there is no relative motion between the blocks. Find the acceleration
fo the blocks.

(c) When the force exceeds the limiting value Flim in the previous part, describe
what occurs. Suppose the upper block is acted by a horizontal force F > Flim.
By analysing in the lower block’s frame or otherwise, calculate the relative
acceleration of the upper block compared to the lower block. If the upper
block has a negligible dimension, find the time required for the block to travel
across the lower block of length L.

,'lt t"ta

Figure 3.2: Two blocks stacked on top of each other.

Question 12: A block of mass m is lying on a wedge of mass M with an angle
θ. All surfaces are smooth and the wedge is not fixed to the ground (Figure 3.3).
Analyse the problem in wedge’s frame of reference.

(a) Draw the force diagram of the block in the frame of the wedge.

(b) Compute the acceleration of the block in this frame. If the block is initially
of height H above the table, find the time required for the block (of negligible
dimension) to reach the bottom of the wedge.

(c) Repeat your analysis in the inertial frame of the lab. Again find the relative
acceleration between the two objects (You should find out how much easier
the analysis is in the non-inertial frame!).

,'lt t"ta

Figure 3.3: The block and the movable wedge.
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Question 13: A pendulum with a bob of mass m, an ideal string of length l
is attached to a cart of mass M free to travel in the upper smooth plane (Figure
3.4). Find the small angle oscillation frequency of the system. You may assume

that θ̇2 � (M+m)g
ml

.[Hint: Consider the problem in the frame of the cart.]

tltt rtra

Figure 3.4: A pendulum with movable base.

Question 14: This question is about pulleys (exciting!).

(a) Two masses m1 and m2 are connected by an ideal string to a smooth ideal
pulley (Figure 3.5). Find the tension in the string and the acceleration of the
two masses respectively.

(b) Now consider three masses m1, m2 and m3 connected to two pulleys by ideal
strings in the configuration shown in Figure 3.6.

(i) First analyse the system in the inertial frame of reference of a person
setting up the system (Lab frame). Find the accelerations of the three
masses.

(ii) Now treat the the lower pulley system as a box with effective mass M .
Using the results in (a), find the acceleration a of the lower pulley system
in terms of M , m1 and g.

(iii) Analysing in the non-inertial frame of reference of the pulley system,
obtain an expression for the acceleration a′ of the two lower masses m2

and m3 in terms of a, g, m2 and m3.

(iv) Find the tension of the string connecting m1 to the lower pulley system
in terms of the tension in the string in the lower pulley system.

(v) Hence, obtain the effective mass of the lower pulley system. Check your
answer using the result in (a) and (b)(i).

(c) Consider now the infinite pulley system shown in Figure 3.7, where all masses
have the same mass m (mi = m, i ∈ N).

(i) Obtain a recursion relation for the effective mass at stage n (nth pulley
up the lowest one), where n is a positive integer.

(ii) What is the limit when n→∞?
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(iii) Hence, find the effective mass of the infinite pulley system for the highest
mass. Calculate the acceleration of it.

,'lt t"ta

Figure 3.5: Two masses m1 and m2 are connected by an ideal string to a smooth
ideal pulley.

,'lt t"ta

Figure 3.6: The 2-step pulley system.
,'lt t"ta

Figure 3.7: The Infinite pulley system.
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3.2 Solutions and Commentary

Question 10: Consider a ball hanged on the top of the ceiling of a uniformly
accelerating train by an ideal string. Find the relationship between the angle that
the string makes with the vertical θ and the acceleration a of the train.
Solution: We analyse the problem with two different methods.

Inertial Frame First we analyse the problem in the inertial frame that has
a velocity instantaneously equal to the velocity of the train. We call this the
instantaneous rest frame (IRF). Drawing a force diagram of the system:
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Figure 3.8: Force diagram of the ball in the IRF.

and using Newton’s Second Law:{
T cos θ = mg

T sin θ = ma
(3.2)

We hence have
a = g tan θ (3.3)

which gives the relationship we wish to find.

Deriving the fictitious force Before we analyse the problem in the non-inertial
frame of the train, we must first understand what we have to change in observing
the problem in a general linearly accelerating non-inertial frame. Consider a gen-
eral inertial frame S0 and a non-inertial frame S. Suppose in frame S0 we have
mr̈0 = F0, where r0 is the position vector of a particle in S0. Let us suppose that
the position vector r in frame S is related to that of frame S0 by

r = r0 −R (3.4)

where R is a general vector. Then differentiating Equation 3.4 twice gives:

r̈ = r̈0 − R̈ (3.5)

so multiplying both sides by m gives:

mr̈ = mr̈0 −mR̈ (3.6)

F = F0 −mR̈ (3.7)
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We have found a relationship that links the forces in the two frames: The force
experienced by particle in the non-inertial frame S (LHS of Equation 3.7) is equal
to the force experienced in the inertial frame S0 plus an additional term −mR̈.
This term is known as the fictitious force (a.k.a. pseudo-force) in the non inertial
frame.

Non-inertial Frame With this in mind we can draw a force diagram again, this
time in the accelerating frame of the train. Noting that the fictitious force points
to the opposite direction of the acceleration in the inertial frame, we have:
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Figure 3.9: Force diagram of the ball in the accelerating frame of the train.

The ball is in equilibrium in this frame so we have{
T cos θ = mg

T sin θ = ma
(3.8)

same as before. We hence have

a = g tan θ (3.3)

same as before.
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Question 11: Two blocks are stacked on top of each other on a frictionless plane.
The upper block has mass m and is lying at the edge of the lower block of mass
M . The static and kinematic coefficients of friction between the masses are µs and
µk respectively. A horizontal force F is exerted on the upper block (Figure 3.2).

(a) The horizontal force is increased slowly from 0. Find the maximum force Flim
such that there is no relative motion between the blocks. Find the acceleration
of the blocks.

(b) Suppose the upper block is acted by a horizontal force F > Flim. By analysing
in the lower block’s frame or otherwise, calculate the relative acceleration of the
upper block compared to the lower block. If the upper block has a negligible
dimension, find the time required for the block to travel across the lower block
of length L.

Solution:

No Relative Motion Suppose first that there is no relative motion between the
blocks. The force diagrams of the two blocks are:
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Figure 3.10: Force diagrams of the two blocks when there is no relative motion
between the blocks.

Considering the two blocks together as the system and using Newton’s Second
Law:

F = (m+M)a (3.9)

This gives

a =
F

m+M
(3.10)

Now consider the lower block. This gives,

fs = Ma =
FM

m+M
≤ µsN (3.11)

Rearranging hence gives

F ≤ µsm(m+M)g

M
(3.12)
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Relative Motion Now suppose there is relative motion between the blocks. The
force diagrams for the two blocks are:
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Figure 3.11: Force diagrams of the two blocks.

The standard method is to analyse the forces of the two blocks. The kinetic
friction is given by

f = Mam = µkmg (3.13)

Rearranging gives the acceleration of the lower block aM :

aM =
µkmg

M
(3.14)

Newton’s Second Law on the horizontal forces of the upper block gives:

mam = F − f (3.15)

am =
F − µkmg

m
(3.16)

The relative acceleration is hence,

∆a = am − aM =
F

m
− µkmg(

1

M
+

1

m
) (3.17)

Alternatively one can use the non-inertial frame of the lower block. The force
diagram of the upper block in this frame gives:
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Figure 3.12: Force diagrams of the upper block in the lower block’s frame.

Using Newton’s Second Law gives:

F − f −maM = ma′ (3.18)

where a′ is the relative acceleration between the two. Using Equations 3.13 and
3.14 gives the same answer as before:

a′ =
F

m
− µkmg(

1

M
+

1

m
) (3.19)
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where a′ and ∆a means exactly the same thing. Using simple kinematics, we have
that

L =
1

2
∆at2 (3.20)

Thus

t =
√

2L(
F

m
− µkmg(

1

M
+

1

m
))−

1
2 (3.21)

Question 12: A block of mass m is lying on a wedge of mass M with an angle θ.
All surfaces are smooth and the wedge is not fixed to the ground (Figure 3.3). Find
the relative acceleration between the two objects. If the block is initially of height
H above the table, find the time required for the block (of negligible dimension)
to reach the bottom of the wedge.
Solution: This problem is most easily solved in the frame of the wedge. The
force diagrams of the two objects are: I'
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Figure 3.13: Force diagrams of the block and the wedge.

Applying Newton’s Second Law to the wedge gives{
N1 sin θ = Ma

N2 = N1 cos θ +Mg
(3.22)

Consider the force diagram of the block in the accelerating frame of the wedge4:
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Figure 3.14: Force diagrams of the block in the non-inertial frame of the wedge.

Newton’s Second Law gives:{
N1 + m

M
N1 sin2 θ = mg cos θ

ma′ = m
M
N1 sin θ cos θ +mg sin θ

(3.23)

4Note here that the fictitious force acts on the centre of mass of the object.
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Figure 3.15: Defining the coordinates for Lagrangian analysis.

The first equation gives:

N1 =
mg cos θ

1 + m
M

sin2 θ
(3.24)

Substituting this into the second equation in Equation 3.23 gives:

ma =
m

M
(
mg cos θ

1 + m
M

sin2 θ
) sin θ cos θ +mg sin θ (3.25)

Simplifying gives

a′ = g sin θ(1 +
cos2 θ

M
m

+ sin2 θ
) (3.26)

Lagrangian Method Defining the coordinates as in the following diagram. The
kinetic energy and potential energy is:

T =
1

2
Mẋ2 +

1

2
m(ẋ+ ẏ cos θ)2 +

1

2
mẏ2 sin2 θ (3.27)

V = −mgy sin θ (3.28)

The Lagrangian is

L = T − V =
1

2
(M +m)ẋ2 +

1

2
mẋ2 +mẋẏ cos θ +

1

2
mẏ2 (3.29)

The Euler-Lagrange equations are:

d

dt
(
∂L

∂q̇i
) =

∂L

∂qi
(3.30)

where qi are the general coordinates of the system. Then since ∂L
∂x

is zero, the
conjugate momentum of the x coordinate (momentum in x-direction) is conserved.
We can write:

d

dt
(
∂L

∂ẋ
) = (M +m)ẍ+mÿ cos θ = 0 (3.31)

giving

ẍ = −m cos θ

M +m
ÿ (3.32)

For the y-coordinate:

d

dt
(
∂L

∂ẏ
) =

d

dt
(mẋ cos θ +mẏ) = mẍ cos θ +mÿ (3.33)
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∂L

∂y
= mg sin θ (3.34)

This gives
ẍ cos θ + ÿ = g sin θ (3.35)

So using Equation 3.32 gives

(1− m cos2 θ

m+M
)ÿ = g sin θ (3.36)

which evaluates to

ÿ = g sin θ(1 +
cos2 θ

M
m

+ sin2 θ
) (3.37)

same as the above method.

Time Required The time required for the block to travel a distance H
sin θ

is

t =

√
2H

a′ sin θ
(3.38)

with a′ being the relative acceleration found in Equation 3.26.
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Question 13: A pendulum with a bob of mass m, an ideal string of length l
is attached to a cart of mass M free to travel in the upper smooth plane (Figure
3.4). Find the small angle oscillation frequency of the system. You may assume

that θ̇2 � (M+m)g
ml

.
Solution: Draw a force diagram of the pendulum in the frame of the cart.
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Figure 3.16: Force diagram of the bob in the non-inertial frame of the cart.

The acceleration of the cart is found from analysing Newton’s Second Law on
the cart:

T sin θ = Ma (3.39)

a =
T sin θ

M
(3.40)

So the fictitious force has a magnitude:

Ff = ma =
m

M
T sin θ (3.41)

Now the restoring force is

mẍ = −T sin θ(1 +
m

M
) (3.42)

Using small angle approximation θ ≈ sin θ ≈ tan θ, and the fact that T cos θ ≈ mg,
we have

mẍ = −x
l
mg sin θ(1 +

m

M
) (3.43)

So the frequency of oscillation can be obtained by comparing with the simple
spring-mass system mẍ = −kx:

ω2
0 =

mg

l
(

1

m
+

1

M
) (3.44)

Lagrangian Analysis Define the x-coordinate of the cart as the coordinate of
the system (see Figure 3.16 for the definition for the coordinates). The kinetic and
potential energies are:

T =
1

2
m(ẋ+ lθ̇)2 +

1

2
ml2θ̇2 sin2 θ +

1

2
Mẋ2 (3.45)
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V = −mgl cos θ (3.46)

so the Lagrangian is:

L =
1

2
(mM)ẋ2 +mlẋθ̇ cos θ +

1

2
ml2θ̇2 +mgl cos θ (3.47)

Again using Euler-Lagrange Equation (Equation 3.30), for the x-coordinate:

d

dt
(
∂L

∂ẋ
) = (M +m)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = 0 (3.48)

Rearranging gives

ẍ = ml
θ̇2 sin θ − θ̈ cos θ

m+M
(3.49)

This shows that momentum is conserved in this direction. Now consider θ:

∂L

∂θ̇
= mlẋ cos θ +ml2θ̇ (3.50)

∂L

∂θ
= −mlẋθ̇ sin θ −mgl sin θ (3.51)

d

dt
(
∂L

∂θ̇
) = mlẍ cos θ −mlẋθ̇ sin θ +ml2θ̈ (3.52)

This gives:
ẍ cos θ + lθ̈ = −g sin θ (3.53)

Now using Equation 3.49 and 3.53, and expanding the expression to first order in
θ, we have:

ml(
θ̇2 sin θ − θ̈ cos θ

m+M
) cos θ + lθ̈ = −g sin θ (3.54)

θ̈ = −g
l
θ − m

M +m
(θ̇2θ − θ̈) (3.55)

This can be rewritten into

θ̈ = −(
m

M
+ 1)(

g

l
+

m

m+M
θ̇2)θ (3.56)

This is not an SHM. However, when the angular velocity is sufficiently small, i.e.
θ̇2 � (M+m)g

ml
, Equation 3.56 to

θ̈ = −(
m

M
+ 1)

g

l
θ (3.57)

so the frequency of oscillation is

ω2
0 =

mg

l
(

1

m
+

1

M
) (3.44)

as before.
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Question 14: A question on Atwood Machines.

(a) Two masses m1 and m2 are connected by an ideal string to a smooth ideal
pulley (Figure 3.5). Find the tension in the string and the acceleration of the
two masses respectively.

(b) Now consider three masses m1, m2 and m3 connected to two pulleys by ideal
strings in the configuration shown in Figure 3.6. Find the accelerations of the
three masses. Find the effective mass of the lower pulley system that induces
such acceleration.

(c) Consider now the infinite pulley system shown in Figure 3.7, where all masses
have the same mass m (mi = m, i ∈ N). Calculate the acceleration of the
uppermost ball due to the entire pulley system.

Solution:

Simple Atwood Machine The force diagrams of the masses are:
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Figure 3.17: The force diagrams of a Simple Atwood Machine.

Without loss of generality assume that m1 < m2. Let the acceleration of the
masses be a. Then Newton’s Second Law gives:{

m2g − T = m2a

T −m1g = m1a
(3.58)

Solving for T and a gives

a =
m2 −m1

m1 +m2

g (3.59)

T =
2m1m2

m1 +m2

g (3.60)

Compound Atwood Machine Now consider two Atwood Machines linked to-
gether as illustrated in Figure 3.6. There are two methods to solve the system.
The most straightforward one is the write down all the equations. Let us define ai
be the acceleration of the ith mass and take upwards to be the positive direction.
Since the pulleys are massless, there must be no net force on it, otherwise there
will be infinite acceleration resulted on the object. The tension in the upper pulley
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system is therefore twice that in the lower pulley system. Newton’s Second Law
gives: 

2T −m1g = m1a1

T −m2g = m2a2

T −m3g = m3a3

(3.61)

The total length of the string is conserved. The accelerations of the three masses
are related by5

a1 = −a2 + a3

2
(3.62)

This evaluates to give

a1 = g
4m2m3 −m1(m2 +m3)

4m2m3 +m1(m2 +m3)
(3.63)

a2 = −g4m2m3 +m1(m2 − 3m3)

4m2m3 +m1(m2 +m3)
(3.64)

a3 = −g4m2m3 +m1(m3 − 3m2)

4m2m3 +m1(m2 +m3)
(3.65)

which a1 can be written as

a1 = g
4m2m3

m2+m3
−m1

4m2m3

m2+m3
+m1

(3.66)

nicely put in the form of Equation 3.59. So the effective mass is

meff =
4m2m3

m2 +m3

(3.67)

An alternative method is to consider the two masses in the lower pulley system.
The force diagrams for two balls in this frame are:
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Figure 3.18: The force diagrams of the lower masses in the accelerating frame of
the lower pulley system.

5a2 and a3 are typically pointing in different directions. Their sum gets rid of the ”relative
acceleration” with respect to the lower pulley, leaving the term that gives the acceleration of the
entire pulley system. Since both fo the masses are accelerating at this acceleration, this number
is doubled (Hence the 1

2 factor). The final negative sign comes from the opposite direction of the
acceleration of m1 and the lower pulley system.
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Again assume without loss of generality assume that m2 < m3. Then{
m3g − T −m3a = m3a

′

m2g − T −m2a = m2a
′ (3.68)

where a is the acceleration of the lower pulley system (downwards) and a′ is the
acceleration of the masses in this frame. Solving for T gives

T =
2m2m3

m2 +m3

(g − a) (3.69)

The tension in the upper string (by the argument in Method I) is 2T :

2T =
4m2m3

m2 +m3

(g − a) (3.70)

Let us write

meff =
4m2m3

m2 +m3

(3.67)

Considering Newton’s Second Law on the upper mass gives:

2T −m1g = m1a (3.71)

Using Equations 3.67 and 3.71 give

m1g +m1a = meff(g − a) (3.72)

Hence giving

a =
meff −m1

m1 +meff

(3.73)

as obtained before. You can obtain the other accelerations by converting them
back to lab frame quantities.

Infinite Atwood Machine This seems like a really difficult question but the
answer is extremely easy. Note that the system is an extension to the Compound
Atwood Machine when m1 = m2 = m3. From previous results we know that we
can treat the lower as having an effective mass of

meff =
4m2m3

m2 +m3

(3.67)

Let us consider some system in this Atwood Machine. The effective mass must be

Meff =
4mx

m+ x
(3.74)

where x is the effective mass of the system just lower than the one in consideration.
This allows us to set up a recurrence relation:

an+1 =
4man
m+ an

(3.75)
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What happens when the number of system goes to infinity? You can check that
the recurrence relation implies a convergent series, but let’s suppose we assume
that the result is convergent. Then when infinity is reached we must have

an+1 = an =
4man
m+ an

(3.76)

This allows us to solve a quadratic which gives

an = 3m (3.77)

Substituting into Equation 3.73 gives

a =
g

2
(3.78)

An alternative (cheaty) method is to note that the tension in the string is propor-
tional to the acceleration of the systems6. The topmost system lives in a world of
acceleration g, the second one g−a. We know that the tension in the string of the
upper system is twice that of the one that is just under it. So

2T

T
=

g

g − a
(3.79)

This solves to give

a =
g

2
(3.78)

as obtained above.

3.3 Take-home skills

The skills that you should now know are:

1. How to use of non-inertial frames in problems.

2. How to deal with recurrence relations.

6You can think about this - if you live in a world which the acceleration is multiplied by a
factor of α, the tension in the string, by Equation 3.60, must also be multiplied by a factor of α
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3.4 Response Comments

General Comments

1. This is in fact one of the worst performed exercises. This is mostly attributed
to the fact that the last question on Atwood machines is poorly performed.

2. Q10: I have initially asked people to finish this exercise before the lecture
on reference frames. Only 2 people handed in their responses, and 1 of them
misunderstood the question owing to the choice of wording in the question.
It is originally intended that this would allow students to think about how
to set up a problem in a linearly accelerating frame but few are able to do
it. It is therefore suggested to just put the question in the introduction of
the chapter.

3. Q11: Most people are able to do the question. Here analysing in the inertial
frame might be easier and some students got away with using that.

4. Q12: Some entirely missed the fact that the wedge is not fixed. Others
drawn the fictitious forces incorrectly. Only one student provided a correct
response.

5. Q13: This is one fo the most straightforward questions. It was intended that
the oscillation amplitude be small and students would overlook the fact that
there are several approximations taken in. This is explained in the example
class.

6. Q14: Truly horrifying. Most people who got this far successfully completed
(a) which is very straightforward. Almost every one either treated the second
pulley system in (b) as having an effective mass of m2 +m3 or assuming that
the acceleration of the second mass and the third mass in the second pulley
system in the inertial frame is equal in magnitude. This resulted in everyone
almost losing ∼ 25 marks there.

7. Summary: This is one of the most important skills in force analysis and
students should definitely revisit these topics if they can in the future given
the poor performance of the exercise.

(Updated by Lucas on 9th August, 2020)



Chapter 4

Projectile Motion

One important topic in HKPhO that we looked over in the lectures is the analysis
of projectile motion of particles. This is essentially a kinematic question in two-
dimensions. The only thing to remember is that there is no acceleration in the
direction orthogonal to the local gravitational field g. Here are just some questions
you can practice on.

4.1 Questions

Question 15: A particle is ejected with an initial speed v0 with an angle θ to
the horizontal.
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Figure 4.1: Sketch of some quantities the motion of the particle.

(a) Derive the equation of trajectory:

y = x tan θ − gx2

2v2
0 cos2 θ

(4.1)

(b) Find the maximum height the particle can reach compared to the point where
it is ejected (see Figure 4.1). Calculate the time for the particle to reach this
position.

(c) Now suppose the same particle is put on a smooth incline of angle φ. The
particle is ejected with the same initial velocity v0 and θ to the horizontal.
Find the equation of trajectory in this case.
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qFigure 4.2: Sketch of the particle on the smooth incline of angle φ.

Question 16: Consider a ball being shot down a cliff of incline angle φ. The
initial velocity for the ball is u and the angle from the horizontal is θ.
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Figure 4.3: A ball being shot down a cliff of angle φ.

There are two approaches to the problem you may choose.

(I) HKPhO - Trigonometry

(a) The equation of trajectory is

y = x tan θ − gx2

2u2 cos2 θ
(4.2)

Write down the relationship between y and x if the ball is to land on
the cliff. Hence express R in terms of u, g, θ and φ.

(b) Using the compound angle formulae, find an alternative expression for
R. Show that R is maximum when 2θ+φ = π

2
. Hence show the following:

(i) The maximum range is given by

R2
0 + 2dR0 = R2

m (4.3)

where R0 = u2

g
, Rm is the maximum horizontal range R and d =

Rm tanφ.

(ii) The quantities are related by:
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Figure 4.4: A relation between quantities.
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(iii) The condition for maximum range Rm is given by

d tan 2θm = Rm (4.4)

(II) Calculus

(a) The equation of trajectory is

y = x tan θ − gx2

2u2 cos2 θ
(4.5)

Write down the relationship between y and x if the ball is to land on
the cliff. Hence express R in terms of u, g, θ and φ.

(b) By differentiating the expression obtained in (a), find an alternative
expression for R. Hence show the following:

(i) The condition for maximum range Rm is given by

d tan 2θm = Rm (4.6)

(ii) The maximum range is given by

R2
0 + 2dR0 = R2

m (4.7)

where R0 = u2

g
, Rm is the maximum horizontal range R and d =

Rm tanφ.

(iii) The quantities are related by Figure 4.4.
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Question 17: What is the maximum angle to the horizontal at which a stone
can be thrown and be always moving away from the observer?

Question 18: An explosion in Beirut occurred on 5 August, 2020. The cause for
the explosion is initially attributed to the ignition of a large amount of ammonium
nitrate. At least 100 people were killed. Here we objectively analyse the explosion
and propose some possible safety measures.

(a) There are typically 3 main reasons why people are injured from explosions.

a) Mechanical injury from the initial shockwave.

b) Injuries from flying debris/ objects caused by the explosion.

c) Physically colliding with objects owing to explosion shockwave.

Let us suppose a normal sized-human can sustain up to E0 units of energy.
The energy released from the explosion is Ee. The person is initially standing
at a distance R from the centre of the explosion (Figure 4.5).
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Figure 4.5: Configuration at the moment of explosion. The man is standing at a
distance R from the centre of the explosion.

Suppose all the energy from the explosion is uniformly released as a shock
wave in the upper hemisphere from the centre. If the person facing the centre
exposes an area of A0 of his body, find the energy absorbed by the human.
You may assume that locally the energy from the shockwave will be entirely
absorbed by the object the wave comes into contact with. Hence find the
condition for which he survives the blast.

(b) Now account for the flying debris. You can suppose that the debris is uniformly
released from the centre of the explosion, each with a mass of dm and a velocity
of u.
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Figure 4.6: Flying debris envelope.
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(i) Find the a relation relating the coordinates of the particle (x, y) and the
initial release angle θ.

(ii) Obtain a quadratic equation in tan θ. For tan θ to exist, find the minimum
value of u in terms of g and (x, y).

(iii) Find the corresponding value for tan θ for the minimum u in (ii).

(iv) Hence obtain an equation for the envelope of the explosion. This gives
an “explosion” boundary which contains all the possible trajectories for
fixed u (see Figure 4.6).

(c) Suppose this person is outside the envelope described in (b) and Figure 4.6.
Model a person as a cube of side L. Suppose that the person takes up all
the kinetic energy from the shockwave which the body has contact with (as in
(a)). He flies backwards and hits a car with his back.
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Figure 4.7: Schematic for flying man.

Suppose m < M . If they are free to move only in a straight line, find the
change in momentum of the man in the collision if the collision is elastic.
Given that the contact surface area is A and the time of collision is ∆t, find
the average pressure on the human. Describe his possible injuries.

(d) Suggest some ways of minimising injuries from the explosion. Also suggest
something that will improve our modelling the system.

Question 19: (Extremely Difficult, need Calculus) A particle is thrown with
initial velocity u from the ground. The angle to horizontal at launch is θ. The
particle path ends when it first hits the ground again. Find the angle of launch
which

(a) Maximises the area covered by the particle.

(b) Maximises the path length travelled by the particle.
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Figure 4.8: Sketch of the particle path and related quantities.

[Hints:

1. This integral is quite useful:

ˆ
sec3 xdx =

1

2
secx tanx+

1

2
log | secx+ tanx| (4.8)

2. Plot of graph

x = 2− sin θ log |1 + sin θ

1− sin θ
| (4.9)

is shown below:

0.5 1.0 1.5
θ
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2

x

Figure 4.9: Graph of Equation 4.9. Note that θ is in radians.

]
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4.2 Solutions and Commentary

Question 15: A particle is ejected with an initial speed v0 with an angle θ to the
horizontal (Figure 4.1). Derive the equation of trajectory and find the maximum
height that the particle can reach and the time to reach that point. Find the
equation of trajectory if the same particle is put on a smooth incline of angle φ.
The particle is ejected with the same initial velocity v0 and θ to the horizontal
(Figure 4.2).
Solution: First we drive the equation of trajectory. This is bookwork:{

x = v0t cos θ

y = v0t sin θ − 1
2
gt2

(4.10)

Eliminating t gives the equation of trajectory.

y = x tan θ − g

2v2
0 cos2 θ

x2 (4.11)

The second part of the question is also bookwork. The maximum height can be
found from energy conservation (or a kinematic equation)

v2
y = 2gH (4.12)

where H is the maximum vertical displacement reached by the particle. Rearrang-
ing gives:

H =
v2

0 sin2 θ

2g
(4.13)

The time required is

H =
1

2
v0t sin θ (4.14)

t =
v0 sin θ

g
(4.15)

If the motion occurs on a frictionless plane, replace the quantities g → g sinφ. The
y′ coordinate along the incline is now y′ = y

sinφ
, where y is the vertical displacement

of the ball.
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Question 16: Consider a ball being shot down a cliff of incline angle φ. The
initial velocity for the ball is u and the angle from the horizontal is θ (Figure 4.3).
Denote R as the horizontal displacement for the ball as it first hits the cliff and d
be the (downward positive) vertical displacement. Show the following:

1. R is maximum when 2θ + φ = π
2
.

2. The maximum range is given by

R2
0 + 2dR0 = R2

m (4.16)

where R0 = u2

g
, Rm is the maximum horizontal range R and d = Rm tanφ.

3. The quantities are related as illustrated in Figure 4.4.

4. The condition for maximum range Rm is given by

d tan 2θm = Rm (4.17)

Solution: There are two approaches to the problem. I will begin by using the
subsidiary angle method.

Method I - Subsidiary Angle We note that elementary trigonometry gives

d = R tanφ (4.18)

Using the equation of trajectory (u→ v0)

y = x tan θ − g

2u2 cos2 θ
x2 (4.11)

This gives

−R tanφ = R tan θ − gR2

2u2 cos2 θ
(4.19)

Solving for R and using the double angle formulae gives:

R =
u2

g
[sin 2θ + tanφ(cos 2θ + 1)] (4.20)

Now using the compound angle formula for sine,

sin(α± β) = sinα cos β ± sin β cosα (4.21)

Equation 4.20 gives

R =
u2

g cosφ
[sin(2θ + φ) + sinφ] (4.22)

To maximise R we simply need

2θ + φ =
π

2
(4.23)
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Therefore the condition for maximum range, using Equations 4.22 and 4.18 is

d tan 2θm = R (4.24)

Using Equation 4.22 we have:

Rm = R0[cosφ+ tanφ(1 + sinφ)] (4.25)

so proving the result 4.16 is merely just an algebraic matter.

R2
0 + 2dR0 = R2

m (4.16)

From this you can show that

(R0 + d)2 = R2
m + d2 (4.26)

so by converse of Pythagoras’ Theorem the quantities are related by a right-angled
triangle.

Method II - Calculus Most of the algebra in this method is the same as that
in Method I. The only difference is, upon reaching Equation 4.20, differentiate the
equation to obtain the extrema of R.

∂R

∂θ
=

2u2

g
(cos 2θ − tanφ sin 2θ) = 0 (4.27)

So this gives:
tanφ = cot 2θ (4.28)

From which (since the angles are physically constrained between 0 and π
2
) it can

be concluded that
2θ + φ =

π

2
(4.23)

as obtained before.

Question 17: What is the maximum angle to the horizontal at which a stone
can be thrown and be always moving away from the observer?
Solution: The difficult thing here is to figure out the condition required in the
question. We want the magnitude to be non-decreasing so

d(r2)

dt
≥ 0 (4.29)

Equivalently in vectorial notation this is:

v · r ≥ 0 (4.30)

So we can write, at the critical angle:

(u cos θ)(ut cos θ) + (u sin θ − gt)(ut sin θ − 1

2
gt2) = 0 (4.31)
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u2 − 3

2
gu sin θt+

1

2
gt2 = 0 (4.32)

This is a quadratic solution in t, which requires real solutions. The determinant
hence gives:

9

4
u2 sin2 θ − 4(

1

2
g2)u2 ≥ 0 (4.33)

From which we obtain

sin2 θ ≥ 8

9
(4.34)

The sine function is monotonically increasing within the physically acceptable
range of θ. Therefore the maximum angle is given by:

sin θ =
2
√

2

3
(4.35)
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Question 18:

(a) There are typically 3 main reasons why people are injured from explosions.

(i) Mechanical injury from the initial shockwave.

(ii) Injuries from flying debris/ objects caused by the explosion.

(iii) Physically colliding with objects owing to explosion shockwave.

Let us suppose a normal sized-human can sustain up to E0 units of energy.
The energy released from the explosion is Ee. The person is initially standing
at a distance R from the centre of the explosion (Figure 4.5). Suppose all the
energy from the explosion is uniformly released as a shock wave in the upper
hemisphere from the centre. If the person facing the centre exposes an area
of A0 of his body, find the energy absorbed by the human. You may assume
that locally the energy from the shockwave will be entirely absorbed by the
object the wave comes into contact with. Hence find the condition for which
he survives the blast.

(b) Now account for the flying debris. You can suppose that the debris is uniformly
released from the centre of the explosion, each with a mass of dm and a velocity
of u. Obtain an equation for the envelope of the explosion. This gives an
“explosion” boundary which contains all the possible trajectories for fixed u
(see Figure 4.6).

(c) Suppose this person is outside the envelope described in (b) and Figure 4.6.
Model a person as a cube of side L. Suppose that the person takes up all the
kinetic energy from the shockwave which the body has contact with (as in (a)).
He flies backwards and hits a car with his back. Suppose m < M . If they are
free to move only in a straight line, find the change in momentum of the man
in the collision if the collision is elastic. Given that the contact surface area
is A and the time of collision is ∆t, find the average pressure on the human.
Describe his possible injuries (Figure 4.7).

Solution: First a bit of disclaimer here. I have used a social context here to give
you some ideas of how you can use the physics knowledge in a practical context.
The diagrams are drawn in a cartoonish way but this is not meant as a joke -
people have genuinely lost their lives and we, as physicists, are simply objectively
analysing the problem to come up with suggestions to minimise loss of lives and
property. As “leaders of the future”, do remember that small decisions you make
may have a huge impact on other people’s lives.

Mechanical Shockwave We begin by discussing the mechanical shockwave.
The main thing I would like you to learn is the concept of solid angle. The rigorous
definition of solid angle is as follows.
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Definition 4.1. The infinitesimal solid angle dΩ from origin O is defined as

dΩ =
dS · r
r3

(4.36)

where dS is the infinitesimal surface element and r is the radial vector from the
origin O (r is the magnitude of the vector) . The unit for solid angle is steradians.

The solid angle for a full spherical surface enclosing the origin is 4π:

Ωsphere =

ˆ π

θ=0

ˆ 2π

φ=0

sin θdθdφ = 4π (4.37)

So for a hemisphere the solid angle is 2π. Provided the man is sufficiently far away,
he covers a solid angle of A0

R2 . So the energy absorbed Eab is:

Eab =
A0

2πR2
Ee (4.38)

The condition for survival is therefore:

E0 >
A0

2πR2
Ee (4.39)

Explosion Envelope Now we calculate the explosion envelope. We start with
the equation of trajectory:

y = x tan θ − g

2u2 cos2 θ
x2 (4.11)

Rearranging gives:
gx2

2u2
tan2 θ − x tan θ + y +

gx2

2u2
= 0 (4.40)

where I have used sec2 θ = 1 + tan2 θ. This is a quadratic equation in tan θ Since
this requires real solutions, the determinant must be non-negative:

x2 − 4(
gx2

2u2
)(y +

gx2

2u2
) ≥ 0 (4.41)

The minimum velocity required to reach a certain angle is given when the above
inequality becomes an equality:

1 =
2g

u2
(y +

gx2

2u2
) (4.42)

Solving for u2 we have:
u2 = gy ± g

√
x2 + y2 (4.43)

To allow for a physical solution we must take the positive root. This gives:

u = ±
√
gy + g

√
x2 + y2 (4.44)
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Note that this means that the quadratic equation (Equation 4.40) has repeated
roots. So this gives:

tan θ =
u2

gx
(4.45)

You can obtain this condition by setting ∂y
∂θ

= 0. This is physically interpreted
as to find the extrema angle to reach a certain height y given a velocity u. So
substituting Equation 4.45 into the equation of trajectory (Equation 4.11) gives:

y = −gx
2

2u2
+
u2

2g
(4.46)

which is a parabolic envelope.

Blasting and Crashing Suppose all the energy is transferred to the kinetic
energy of the man. We have from Equation 4.38:

1

2
mu2 = Eab =

A0

2πR2
Ee (4.47)

Recall from Chapter 1 that after an elastic collision with the second object initially
stationary we have the final velocity:

v =
m−M
m+M

u (4.48)

so the momentum change is

∆p = (1− m−M
m+M

)mu (4.49)

The pressure is hence:

P =
2mM

A∆t(m+M)

√
A0Ee
mπR2

(4.50)

The person is likely to die from internal rupture of organs from the impact with
the car or mechanical injuries causing loss of blood. Solutions to the last part is
open for interpretation.

Question 19: A particle is thrown with initial velocity u from the ground. The
angle to horizontal at launch is θ. The particle path ends when it first hits the
ground again. Find the angle of launch which

(a) Maximises the area covered by the particle.

(b) Maximises the path length travelled by the particle.

Solution: This question is not in HKPhO syllabus. It requires a sophisticated
use of calculus.
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Maximum Area The area covered by the motion is

A =

ˆ
ydx (4.51)

Using the equation of trajectory (Equation 4.11) we have:

A =

ˆ R

0

(x tan θ − gx2

2u2 cos2 θ
)dx (4.52)

Solving the integral gives:

A =
2u4 sin3 θ cos θ

3g2
(4.53)

Maximising with respect to θ gives:

dA

dθ
= − sin4 θ + 3 sin2 θ cos2 θ = 0 (4.54)

This solves to give:

sin θ =

√
3

2
(4.55)

or
θ =

π

3
(4.56)

Maximum Length The path length travelled by the particle is given by

dl2 = dx2 + dy2 (4.57)

l =

ˆ tmax

0

√
(
dx

dt
)2 + (

dy

dt
)2dt (4.58)

We know that dx
dt

= u cos θ and dy
dt

= u sin θ − gt. Substitution gives:

l = u cos θ

ˆ tmax

0

√
1 + (

gt

u cos θ
− tan θ)2dt (4.59)

Use the substitution tanφ = gt
u cos θ

− tan θ. The integration boundaries1 are:
tanφ|t=0 = − tan θ

tanφ|t=tmax = tan θ

secφ|t=0 = sec θ

secφ|t=tmax = sec θ

(4.60)

Using the standard integral
ˆ

sec3 φdφ =
1

2
secφ tanφ+

1

2
log|secφ+ tanφ| (4.61)

1You should check this on your own.
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we hence have:

l =
u2 sin θ

g
+
u2 cos2 θ

2g
log|1 + sin θ

1− sin θ
| (4.62)

Setting ∂l
∂θ

= 0 gives

2− sin θ log|1 + sin θ

1− sin θ
| = 0 (4.63)

This is plotted in Figure 4.9 (shown again here).
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You can see that the root occurs at about 1 radians. Using RootFinder this
evaluates to:

θmax = 0.985515 = 56.4658◦ (4.64)

4.3 Take-home skills

The skills that you should now know are:

1. How to analyse problems regarding projectile motion.

2. Using the determinant argument to argue for real solutions.
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4.4 Response Comments

General Comments

1. Q15: Most people who failed to finish the last part misunderstood my ques-
tion. My apologies there...

2. Q16: A really straight-forward question. Most people got it right. Some
failed to use converse of Pythagoras theorem!

3. Q17: Most who could not do it missed the condition. Some failed to use the
determinant argument after figuring out the condition.

4. Q18: (a) is actually quite straightforward but apparently quite a few people
got the surface area of a hemisphere wrong. (b) is a standard HKPhO-type
question and most had trouble with using the determinant argument. (c) is
straight-forward.

5. Q19: I am actually surprised someone finished (b) - going through the algebra
is quite tough and well done!!

6. Overall: This is one of the best-performing exercise. Well done to you all.
(Updated by Lucas on 21st August, 2020)



Chapter 5

Rod and Strings

In this chapter, we will talk about how to deal with questions with regards to rods
and strings. Let us first review a few definitions surrounding these objects.

Definition 5.1. An ideal string is

1. Inextensible - it cannot stretch.

2. Massless - it has no mass.

Definition 5.2. An ideal massless rod

1. Has no mass.

2. Is non-extensible.

Definition 5.3. An ideal spring

1. Acts in 1D.

2. Is massless.

3. Obeys Hooke’s Law for small changes in length x.

Note that if an object is massless, there must not be any net force or torque on
the object. Otherwise this would result in an infinite acceleration, something not
allowed physically.

69
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5.1 Questions

Question 20: Consider two spheres of mass 2m and m connected by an ideal
rigid rod initially lying at rest on a smooth horizontal plane.
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Figure 5.1: Ideal rigid rod with end masses of 2m and m.
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(a) Perpendicular Impulse.
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(b) Impulse at an angle θ.

Figure 5.2: Impulse given on the system at different directions.

(a) Let us suppose ball B is given on initial impulse of J perpendicular to the rod
(Figure 5.2a). Find the tension in the rod. Also find the period of revolution
of the system.

(b) Repeat the calculation when the impulse is given at an angle θ to the axis of
the system (Figure 5.2b).

Question 21: A ball of mass m is attached to the ceiling by an ideal string of
length L. The system is initially at rest. The angle that the string makes with the
vertical is θ (Figure 5.3).
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Figure 5.3: Pendulum system with ball of mass m and string of length L.
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Figure 5.4: Configuration in (b).

(a) Find the acceleration and tension just after the system is released from rest.
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(b) Let us suppose that initially the angle θ = π
2

(Figure 5.4). If the ball is released
from rest, find the tension and acceleration in terms of θ.

Question 22: In these following systems, two point masses of mass m are con-
nected to the ends of an ideal rigid rod. The systems are released from rest. Find
the tension in the rod just after release. (Also find the accelerations of the balls
just after release.)
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(a) Set up (a).
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(b) Set up (b).

Figure 5.5: Set ups of rigid rod with end masses m.
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(a) Set up (c).
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(b) Set up (d).

Figure 5.6: Set ups of rigid rod with end masses m at an angle θ to the horizontal.
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Question 23: Consider a rod with its ends connected to m1 and m2 respectively
initially at rest on the surfaces of a smooth corner as illustrated in Figure 5.7.
A box is put next to the rod and the lower ball and the box are not initially in
contact with each other.
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Figure 5.7: Two balls of mass m1 and m2 connected to the ends of the rod sliding
down a smooth corner. The box and the lower mass is not initially in contact with
each other.

(a) Assume (only in this part) that m1 = m2 = m. Find the initial accelerations
of the masses if the initial angle between the rod and the vertical wall is θ0.

(b) Now the system is released from rest. Find the angle θ that the rod makes
with the vertical wall when the rod detaches from the wall. Assume that
m1 = m2 +M .

(c) After the detachment, find the vertical velocity of the upper ball when it is
just about to hit the floor.

Question 24: Consider three identical balls on a horizontal plane. The two outer
balls are connected to the middle by two strings of length l.
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Figure 5.8: Three identical balls of mass m with two strings of length l.

Initially the two outer balls are placed such that the strings are not slackened
and they make an angle θ0 to the horizontal. The middle ball is given an initial
impulse of I such that the centre ball moves at a velocity of v0.

(a) Find the relationship between I and v0. Hence find the initial velocities of the
outer balls.

(b) When the outer balls first collides with each other, find the velocity of one of
these balls.
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(c) Suppose a particle is moving in plane polars. Derive the following acceleration
expression:

r̈ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ (5.1)

Using this result, or otherwise, derive the equation of motion of the system.
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5.2 Solutions and Commentary

Question 20: Consider two spheres of mass 2m and m connected by an ideal
rigid rod initially lying at rest on a smooth horizontal plane. Suppose ball B is
given on initial impulse of J perpendicular to the rod (Figure 5.2a). Find the
tension in the rod. Also find the period of revolution of the system. Repeat the
calculation when the impulse is given at an angle θ to the axis of the system (Figure
5.2b).
Solution: These problems are all easily dealt with using techniques from analysing
rigid body dynamics. However, it is also possible to analyse the problem in terms
of Newtonian laws. Here I present two methods to approach the same problem.
The Newtonian solution is kindly provided by Albus Poon whom I am indebted
to.

Newtonian Laws

Rigid Body Dynamics We first calculate the moment of inertia about the
centre of mass of the system.

I = m(
2L

3
)2 + 2m(

L

3
)2 =

2

3
mL2 (5.2)

The angular speed can be calculated from the gain in angular momentum.

L = J
2L

3
= Iω (5.3)

which solves to give:

ω =
2LJ

3I
(5.4)

Substituting the moment of inertia I gives,

ω =
2LJ

2mL2
=

J

mL
(5.5)

The tension can be calculated from the centripetal acceleration of one of the balls.
Here consider ball B.

T = (
2L

3
)(

J

mL
)2 =

2J2

3mL
(5.6)

For the second part simply replace J by J sin θ.

Question 21: A ball of mass m is attached to the ceiling by an ideal string of
length L. The system is initially at rest. The angle that the string makes with the
vertical is θ (Figure 5.3). Find the acceleration and tension just after the system
is released from rest. Now suppose that initially the angle θ = π

2
(Figure 5.4). If

the ball is released from rest, find the tension and acceleration in terms of θ.
Solution: The first part to the problem is straight-forward. The free-body dia-
gram of the system is sketched in Figure 5.9.
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Figure 5.9: The free-body diagram for the string-mass system.

There is no acceleration parallel of the massless string. This leaves the tangen-
tial acceleration of the ball, therefore,

a = g sin θ (5.7)

The tension along the string is trivially obtained.

T = mg cos θ (5.8)

Using the same argument as above, as the system evolves from rest at θ = π
2
,

the tension and tangential acceleration is also

atan = −g sin θ (5.9)

T = mg cos θ (5.10)
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Question 22: In these following systems, two point masses of mass m are con-
nected to the ends of an ideal rigid rod. The systems are released from rest. Find
the tension in the rod just after release. (Also find the accelerations of the balls
just after release.)
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(a) Set-up 1.
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(b) Set-up 2.
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(a) Set-up 3.
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(b) Set-up 4.

Solution: I will only calculate the tension in the string using rigid body dy-
namics. The acceleration of the balls can be easily obtained by substituting the
(calculated) value of the tension back to the equations of motion to find the ac-
celerations ẍ of the centre of mass and the angular acceleration θ̈. The resulting
acceleration is found by

ares = ẍ+ rθ̈ (5.11)

where r is the distance of the object from the centre of mass.

Set-up 1 Consider vertical forces (Figure 5.12). This gives

2mÿ = 2mg − T (5.12)

The rotational version of the Newton’s Second Law gives:

Iθ̈ = T
L

2
(5.13)

where I = 1
2
mL2 is the moment of inertia of the rod about its centre of mass. By

noting that there is no vertical forces at the leftmost ball (as it is connected to a
massless string), we can write:

ÿ =
L

2
θ̈ (5.14)

Substituting the expressions for ẍ and θ̈ gives

2mg − T
2m

=
T

2m
(5.15)
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This reduces to

T = mg (5.16)
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Figure 5.12: Free-body diagram of Set-up 1.

Set-up 2 The vertical NII1 are the same as found in Equation 5.12. The rota-
tional NII gives (Figure 5.13):

T
L

6
= Iθ̈ (5.17)

Using the moment of inertia I = 1
2
mL2,

θ̈ =
T

3mL
(5.18)

There is no net acceleration at the attachment point with the rod and the string.
This condition is mathematically expressed as:

ẍvert =
L

6
θ̈ =

T

18m
(5.19)

Hence after substitution we have

T =
9

5
mg (5.20)
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Figure 5.13: Free-body diagram of Set-up 2.

Set-up 3 Consider the free-body diagram of the set-up. The vertical NII is the
same as before (Equation 5.12). The rotational NII gives (Figure 5.14):

L

2
T cos θ = Iθ̈ =

1

2
mL2θ̈ (5.21)

1NII means Newton’s Second Law of Motion.
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This reduces to

θ̈ =
T cos θ

mL
(5.22)

Note that there is no vertical acceleration at the point of contact of the string and
the rod. This gives the condition:

ÿ =
L

2
θ̈ cos θ (5.23)

This gives
T cos2 θ

2m
=

2mg − T
2m

(5.24)

Solving for T gives

T =
2mg

1 + cos2 θ
(5.25)
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Figure 5.14: Free-body diagram of Set-up 3.

Set-up 4 Consider the free-body diagram of the set-up (Figure 5.15). The ver-
tical NII is the same as before (Equation 5.12, again!). The rotational NII gives

L

6
T cos θ = Iθ̈ (5.26)

This gives

θ̈ =
T cos θ

3mL
(5.27)

There is no vertical acceleration at the point of contact of the string and the rod.
This is mathematically expressed as the following

ÿ =
L

6
θ̈ cos θ (5.28)

Substitution for ÿ and θ̈ gives

2mg − T
2m

=
T cos2 θ

18m
(5.29)

Solving for T gives

T =
18mg

9 + cos2 θ
(5.30)
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Figure 5.15: Free-body diagram of Set-up 4.
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Question 23: Consider a rod with its ends connected to m1 and m2 respectively
initially at rest on the surfaces of a smooth corner as illustrated in Figure 5.7.
A box is put next to the rod and the lower ball and the box are not initially in
contact with each other.

(a) Assume (only in this part) that m1 = m2 = m. Find the initial accelerations
of the masses if the initial angle between the rod and the vertical wall is θ0.

(b) Now the system is released from rest. Find the angle θ that the rod makes
with the vertical wall when the rod detaches from the wall. Assume that
m1 = m2 +M .

(c) After the detachment, find the vertical velocity of the upper ball when it is
just about to hit the floor.

Solution: This problem is extremely similar to ladder question in Ch2. This is
split into the following parts.

Initial Accelerations The initial condition is solved in a similar method to the
questions above. First consider the free-body diagram of the rod.
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Figure 5.16: Free-body diagram of the rod.

Newton’s Second Law for horizontal, vertical and rotational directions give the
following set of equations:

mẍ = N1

mÿ = N2 − 2mg

Iθ̈ = (N2 sin θ −N1 cos θ) L
2

(5.31)

where (x, y) is the coordinates of the centre of mass. Eliminating N1 and N2 gives

Iθ̈ = (2mg +mÿ) sin θ −mẍ cos θ (5.32)

Now we need to find expressions for ẍ and ÿ. Simple geometry gives:

(x, y) =

(
L

2
cos θ,

L

2
sin θ

)
(5.33)

Differentiating twice gives:

(ẋ, ẏ) =

(
−L

2
sin θθ̇,

L

2
cos θθ̇

)
(5.34)
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(ẍ, ÿ) =

(
−L

2
cos θθ̇2 − L

2
sin θθ̈,−L

2
sin θθ̇2 +

L

2
cos θθ̈

)
(5.35)

Initially θ̇ = 0. This solves to give:

(ẍ0, ÿ0) =

(
−L

2
sin θθ̈,

L

2
cos θθ̈

)
(5.36)

Hence, substituting this into Equation 5.32 gives:

θ̈0 =
2g sin θ

L
(5.37)

This solves to give the initial accelerations:

ẍ0 = −g sin2 θ (5.38)

ÿ0 = g cos θ sin θ (5.39)

To obtain the accelerations of the balls, use Equation 5.11 again. This is left as
an exercise.

Detachment Angle Conservation of energy gives

mgL(cos θ0 − cos θ) =
1

2
m1v

2
y +

1

2
m2v

2
x +

1

2
Mv2

x (5.40)

This reduces to
2gL(cos θ0 − cos θ) = v2

x + v2
y (5.41)

Since the rod is a rigid body, all quantities along the direction of the rod must be
conserved. So velocities parallel to the direction of the rod is the same (Figure
5.17), giving

vy cos θ = vx sin θ (5.42)

Substitution into Equation 5.41 gives

v2
x = 2gL cos2 θ(cos θ0 − cos θ) (5.43)

Maximise to give

cos θ =
2

3
cos θ0 (5.44)

This is the angle of detachment of the rod.

16.

.,.&F-9
5

\45

I

31.

yo-{
H
J

vrH--
.vt -

*frta Stot '
J

Gi-; r.Tcrr9'Ye
\ \\T

irY€

s,8-13'

Figure 5.17: Velocities along the rod.
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Figure 5.18: The system when the rod is about to hit the floor.

Velocity of upper ball when it hits the floor At the point of detachment
the velocity of the ball is

v2
x = 2gL

(
2

3
cos θ0

)2(
1

3
cos θ0

)
(5.45)

This gives

v2
x =

8gL

27
cos3 θ0 (5.46)

After detachment from the wall the horizontal momentum is conserved. The ve-
locity of the centre of mass of the rod when the system hits the ground is

v0 =
m2vx

m1 +m2

(5.47)

With the quantities defined in Figure 5.18, we now use conservation of energy:

1

2
(m1 +m2)v2

0 +
1

2
m1v

2
f,y =

1

2
m2v

2
x +

1

2
m1v

2
y (5.48)

This gives

v2
f,y =

m2

m1 +m2

v2
x + v2

y (5.49)

Note that at detachment,
vy = vx tan θ (5.50)

where

tan θ =

√
1− 4

9
cos2 θ0

2
3

cos θ0

(5.51)

Therefore we have

v2
f,y =

[
8gL

27
cos3 θ0

] [
m2

m1 +m2

+
1− 4

9
cos2 θ0

4
9

cos2 θ0

]
(5.52)
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Question 24: Consider three identical balls on a horizontal plane. The two outer
balls are connected to the middle by two strings of length l. Initially the two outer
balls are placed such that the strings are not slackened and they make an angle θ0

to the horizontal. The middle ball is given an initial impulse of I such that the
centre ball moves at a velocity of u0.

(a) Find the relationship between I and u0. Hence find the initial velocities of the
outer balls.

(b) When the outer balls first collides with each other, find the velocity of one of
these balls.

(c) Derive the equation of motion of the system.

Solution: This question is similarly adapted from an SYSSPhO Question.
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Figure 5.19: The quantities of the system after the initial impulse is given.

Relationship between I and u0 Since the rod is a rigid body, quantities along
the rod are conserved. Therefore, we have

u = u0 cos θ0 (5.53)

where u is the initial velocity of the outer balls. The horizontal impulse is

I = mu0 + 2mu cos θ0 (5.54)

Hence

I = mu0 + 2mu0 cos2 θ0 (5.55)

This is the relation between I and u0. Then

u0 =
I

m(1 + 2 cos2 θ0)
(5.56)

Therefore,

u =
I cos θ0

m(1 + 2 cos2 θ0)
(5.57)
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Velocity of outer balls at collision Note that horizontal momentum is con-
served. Therefore, at the point where the two balls collide with each other, the
centre ball has a velocity

v0 =
I

3m
(5.58)
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Figure 5.20: The quantities of the system when the outer balls collide with each
other. All the balls have the same horizontal velocity.

Conservation of energy gives

1

2
mu2

0 +mu2 =
3

2
mv2

0 +mv2 (5.59)

This reduces to

u2
0 + 2u2 = 3v2

0 + 2v2 (5.60)

Substituting Equation 5.53 and rearranging gives

v2 =
1

2

[
u2

0(1 + cos2 θ0)− 3v2
0

]
(5.61)

Substituting expressions for u0 and v0 (Equations 5.56 and 5.58) gives

v2 =
1

2

[
I2

m2(1 + 2 cos2 θ0)2
− I2

3m2

]
(5.62)

Hence

v =
I

m(1 + 2 cos2 θ0)

√
1− 2 cos2 θ0 − 2 cos4 θ0

3
(5.63)

Equation of Motion The equation of motion is easily derived by considering the
evolution of the system in the non-inertial frame of the middle ball. By considering
the free-body diagram of the middle ball, NII along the horizontal direction gives

mẍ = 2T cos θ (5.64)

The acceleration of the centre ball is hence

ẍ =
2T cos θ

m
(5.65)

So in the non-inertial frame of the middle ball, the free-body diagram is
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Figure 5.21: Free-body diagram of the outer (upper) ball in the non-inertial frame
of the middle ball.

Recall that the acceleration of a particle in plane polars is

r̈ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ (5.1)

Note that r̈ = ṙ = 0 since the string is stretched at all times. Then NII in the
radial and tangential directions give

T (1 + 2 cos2 θ) = mrθ̇2 (5.66)

2T cos θ sin θ = mrθ̈ (5.67)

respectively. Eliminating T gives

θ̈ =
2 cos θ sin θ

1 + 2 cos2 θ
θ̇2 (5.68)

This is the equation of motion of the system. Interesting, the angular evolution of
the system is shown in the following graphs.

10 20 30 40 50 60
t

0.5

1.0

1.5

2.0

2.5

3.0

θ

Figure 5.22: A plot of the θ evolution with time. The horizontal axis is time and
the vertical axis is θ. Here the initial conditions are θ0 = π

6
and θ̇0 = −0.1. The

different colours show the separately numerically integrated solutions, with the
hard-sphere collision implemented manually at the boundaries (see the Appendix
for further explanation).
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Figure 5.23: A plot of the θ̇ evolution with time. The horizontal axis is time and
the vertical axis is θ̇ = ω. Here the initial conditions are θ0 = π

6
and θ̇0 = −0.1.

The different colours show the separately numerically integrated solutions, with the
hard-sphere collision implemented manually at the boundaries (see the Appendix
for further explanation).

This shows that the outer-balls travel the fastest when all the three balls are
travelling in the same direction. This matches up with our intuition! The same
result can be done by performing a Lagrangian analysis on the system. This
method, together with a guide on plotting the figures in shown in the Appendix.

5.3 Take-home skills

The skills that you should now know are:

1. Conditions for rigid bodies - there is no internal relative motion.

2. Practising elementary physics techniques on rigid body problems.



Chapter 6

Detachment

This chapter is on problems relating to the detachment of an object with something.
This is a really common condition for objects in classical dynamics, typically sig-
nalling the need for change of coordinates due to the different constraints provided
by the problem. We need not, however, go that deep in the analysis route. All
you have to remember is that in the event of detachment any contact forces would
simply vanish, and applying conservation laws and force analysis would suffice at
that point.

6.1 Questions

Question 25: In this question we will discuss the problem of balls and spherical
surfaces.

(a) Consider a ball of mass m (which you can consider as dimensionless) put on
top of a hemisphere of radius R. The hemisphere is fixed on the ground. The
ball is given a small push push from rest. Find the angle for which it detaches
from the hemisphere.
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Figure 6.1: A ball resting on top of a hemisphere of radius R. The ball is given a
small horizontal perturbation.

(b) Now consider the following set-up: a “slide” made up by two quarter-circles
of radius R, one convex and one concave. A ball is initially put at a height H
above the ground on the track. It is released from rest. Find:

87
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(i) The velocity of the ball when it reaches the middle point C.

(ii) The angle θ from the vertical of C when the ball detaches from the surface.

(iii) The horizontal displacement from the original position when the ball
lands on the floor.
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Figure 6.2: The track made up of circular parts. The ball is put on the track at
H from the ground.

Question 26: A ball is connected to the end of a massless rigid rod. It is given
a push such that the ball has an initial velocity of v0.
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Figure 6.3: Pendulum of length L and bob mass of m given a initial velocity v0 to
the right.

Find the minimum velocity of the system to complete a full cycle of motion.
Question 27: Consider a ball connected to the end of an ideal string of length
L. Tha ball is released from rest when the string is horizontal.
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Figure 6.4: Pendulum with peg at distance L
2

down the vertical of the connection
point.

There is a peg L
2

down point P where the string is nailed to the wall.

(a) Find the velocity of the ball when the string is vertical.
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(b) Find the angle θ which the string first becomes slackened. The angle is mea-
sured from the vertical from point P (so like a clock).

(c) Describe the motion of the ball after the string is just slackened.

(d) Remove the peg. What happens if the string is replaced by a rod and the ball
is given an initial downward velocity?

Question 28: A box is placed on a spring balance (Figure 6.5). The spring is
compressed by x0. Suppose the spring is further pushed down such that it is now
x1 from the equilibrium of the system. Find the extension length of the spring
when the box detaches from the stage of the spring balance system.
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Figure 6.5: A box on top of a spring balance.
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6.2 Solutions and Commentary

Question 25: In this question we will discuss the problem of balls and spherical
surfaces.

(a) Consider a ball of mass m (which you can consider as dimensionless) put on
top of a hemisphere of radius R. The hemisphere is fixed on the ground. The
ball is given a small push push from rest. Find the angle for which it detaches
from the hemisphere.

(b) Now consider the following set-up: a “slide” made up by two quarter-circles of
radius R, one convex and one concave (Figure 6.2). A ball is initially put at
a height H above the ground on the track. It is released from rest. Find the
velocity of the ball and the angle from vertical θ when the ball detaches from
the surface. Hence find the horizontal displacement from the original position
when the ball lands on the floor.

Solution: This is a standard question considering detachment of objects.

Ball and Hemisphere First draw a free-body diagram of the ball.
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Figure 6.6: Free-body diagram of the ball on the hemisphere.

Using conservation of energy, we have that

mgR(1− cos θ) =
1

2
mv2 (6.1)

Solving for v2 gives
v2 = 2gR(1− cos θ) (6.2)

Now the centripetal force acting on the ball gives

m
v2

R
= mg cos θ −N (6.3)

When ball detaches from the hemisphere, the ball is no longer “pressing” on the
hemisphere. Therefore the normal force is vanishes, and

v2 = gR cos θ (6.4)

Equating v2 in Equations 6.4 and 6.8 gives

gR cos θ = 2gR− 2gR cos θ (6.5)

This solves to give

cos θ =
2

3
(6.6)
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The “slide” Suppose the velocity of the ball at the centre of the slide (Point C)
is v0. Conserving energy gives

mg(H −R) =
1

2
mv2

0 (6.7)

This solves to give

v2
0 = 2g(H −R) (6.8)xt&
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Figure 6.7: Diagram of the slides with the relevant quantities labelled.

Now suppose the ball detaches at point B. The free-body diagram is exactly
the same (the mirror image of) as that illustrated in the first part of the question.
Conserving energy with respect to points B and C gives

v2 − v2
0 = 2gR(1− cos θ) (6.9)

Substituting Equation 6.8 and rearranging gives

v2 = 2gH − 2gR cos θ (6.10)

NII in the radial direction is

m
v2

R
= mg cos θ −N (6.11)

Now setting N = 0 at the point of detachment gives

v2 = gR cos θ (6.12)

Hence using Equation 6.10 gives

3gR cos θ = 2gH (6.13)

giving

cos θ =
2H

3R
(6.14)

Note that here there is an additional condition that

H ≤ 3R

2
(6.15)
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This reflects the fact that if H exceeds this value, the ball would simply detach at
point C of the slide and fly straight off1.

To find the horizontal displacement from the initial position we use the equation
of trajectory

−R cos θ = −x tan θ +
gx2

2v2 cos2 θ
(6.16)

where v is the velocity of the ball at Point B of the slide. Using Equation 6.10 and
solving the quadratic equation gives:

x = R cos3 θ(− tan θ +
√

2 sec2 θ + tan2 θ) (6.17)

where we have taken the positive root (the negative root is unphysical). Here the
angle θ is given by Equation 6.14. To account for the total displacement, however,
one must also consider the horizontal displacement from the original position to
Point B. This evaluates to:

xtotal = x+R sin θ + (2R−H) tan θ (6.18)

where the second term comes from the horizontal displacement between B and C
and the last term is from considering the horizontal displacement between point
C and the initial release point.
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Figure 6.8: Geometry for finding the third term of the total horizontal displace-
ment.

1This condition can be obtained by considering the NII and centripetal acceleration at point
B of the slide.
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Question 26: A ball is connected to the end of a massless rigid rod. It is given
a push such that the ball has an initial velocity of v0. Find the minimum velocity
of the system to complete a full cycle of motion.
Solution: To find the required condition, note that we only need to check the
point when the ball reaches the highest point. This is when the ball has the
smallest velocity. Conserving energy gives

1

2
mv2

0 =
1

2
mv2 + 2mgL (6.19)

This gives
v2

0 = v2 + 4gL (6.20)

If the ball is given the minimum velocity, there is no tension in the string at the
highest point so

mg = m
v2

L
(6.21)

so
v2 = gL (6.22)

Therefore, using Equation 6.20 this gives

v2
0 = 5gL (6.23)

This is the minimum velocity as required.
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Figure 6.9: Free-body diagram of the ball connected to the rod when it is at the
uppermost position.
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Question 27: Consider a ball connected to the end of an ideal string of length
L. Tha ball is released from rest when the string is horizontal. There is a peg L

2

down point P where the string is nailed to the wall. Find the angle θ which the
string first becomes slackened (the angle is measured from the vertical from point
P (like a clock)). Describe the motion of the ball after the string is just slackened.
What happens if the string is replaced by a rod and the ball is given an initial
downward velocity (assume there is no peg in this situation)?
Solution: A standard question on strings and rods again. The first part on
finding the velocity of the ball v0 when the string is vertical is trivial - conservation
of energy gives

1

2
mv2

0 = mgL (6.24)

giving
v0 =

√
2gL (6.25)
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Figure 6.10: The diagram when the string becomes slacked. This shows the defi-
nition of the angle θ.

Now consider the point when the string becomes slackened. Conservation of
energy gives

1

2
mv2 =

L

2
mg(1− cos θ) (6.26)

Solving for v2 gives
v2 = gL(1− cos θ) (6.27)

At the detachment point, the tension in the string is zero. Therefore, NII in the
radial direction gives

mg cos θ = m
v2

L
(6.28)

v2 =
1

2
gL cos θ (6.29)

Using Equation 6.27 and 6.29 gives

cos θ =
2

3
(6.30)

What happens after the string is detached? Similar to the motion in the last ques-
tion, the ball is only under the influence of gravity. Therefore the ball undergoes
projectile motion. What happens next depends on whether the ball passes the peg
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from above or not - if it does, then the ball undergoes an anharmonic oscillation.
If it doesn’t, then the ball travels to the other side and the same thing happens
again (or the string breaks...).

Replacing the string by a rod A rod can provide a pulling or pushing force.
In this case, the ball is constrained to move in a circular motion. Therefore the
projectile motion described above will not happen (as a rod would not become
“slackened”) and the rod simply oscillates anharmonically between the extreme
points of the motion.
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Question 28: A box is placed on a spring balance (Figure 6.5). The spring is
compressed by x0. Suppose the spring is further pushed down such that it is now
x1 from the new equilibrium of the system. Find the extension length of the spring
when the box detaches from the stage of the spring balance system.
Solution: The new equilibrium position of the system is found by considering
forces acting on the box.

mg = kx0 (6.31)

giving

x0 =
mg

k
(6.32)

The equation of motion is
mẍ = −kx−mg (6.33)

The solution to the equation is

x = A cos(ω0t)− x0 (6.34)

The initial condition gives that

x(0) = −x0 − x1 = A− x0 (6.35)

This gives
A = −x1 (6.36)

Hence this gives the acceleration as

ẍ = ω2
0x1 cos(ωt) (6.37)

The box detaches from the platform when the acceleration (downward) of the
motion is equal to the gravitational acceleration. Mathematically this is expressed
as

ẍ = −g (6.38)

Hence using Equation 6.37 gives

ω2
0x1 cos(ωt) = −g (6.39)

t =
1

ω0

[
cos−1

(
g

ω2
0x1

)
+
π

2

]
(6.40)

6.3 Take-home Skills

1. Usage of conservation laws.

2. Dealing with detachment problems.



Chapter 7

Gravitation

Newtonian Gravitation is one of the oldest yet most-used theories in physics. It is
developed by Sir Isaac Newton and here we make a short summary of the theory.
The proposition that Newton suggested was that the gravitational force is a central
field force which has an inverse-square dependence on the radial separation from
the source. Here we make some quick definitions and postulates.

Definition 7.1. A central force is a force that only depends on the radial sepa-
ration from the source to the object. It acts radially out-of or towards the source.
Mathematically we write

F = f(r)er (7.1)

where f(r) is a function that depends only on the radial distance from the object
to the source r.

Postulate 7.1. Newton postulated the gravitation force to be of the following form

F = −GMmG

r2
er (7.2)

where G is the gravitational constant and M is the mass of the source. mG is the
gravitational mass of the object, which is different from the inertial mass mI . r is
the radial distance between the two masses (the source and the object).

Postulate 7.2. There is no a priori reason why the gravitational mass and the
inertial mass is equal. It is postulated that

mG

mI

= const (7.3)

Experimentally, they are shown to be approximately equal to each other. It is
therefore typical to set the constant to be 1. We therefore drop the subscripts for
convenience.

97
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Under a pure central force (field), an object undergoes orbital motion around
a massive object (which acts as a source for this field). For gravitational forces,
these orbits are conic sections (circular, elliptical, parabolic, hyperbolic). Here we
only deal with closed orbits, which do not extend to infinity1 Since the systems are
normally isolated and the force is acting in the radial direction (which exerts no
torque on the orbiting object), the energy and angular momentum of the motion
are both conserved. This has the following consequences.

Postulate 7.3. The entire motion is contained in a plane (a 3D subspace). This
follows from the conservation of momentum.

Definition 7.2. The gravitational potential energy V (r) is defined as

V (r) = −GMm

r
(7.4)

This expression can be found by integrating the force law with respect to radial dis-
tance to find the work done to take the object to infinity. The integration constant
is set by V (∞) = 0.

We can write the total energy as the following

E =
1

2
mv2 − A

r
(7.5)

where A = GMm. Since the motion is constrained in a plane, we can use plane
polars:

v = ṙer + rθ̇eθ (7.6)

Therefore the total energy can be written as

E =
1

2
mṙ2 +

1

2
mr2θ̇2 − A

r
(7.7)

The angular momentum J in the system is

J = mr2θ̇ (7.8)

Therefore Equation 7.7 becomes

E =
1

2
mṙ2 +

J

2mr2
− A

r
(7.9)

Therefore we can identify the effective potential energy as follows:

Ueff =
J

2mr2
− A

r
(7.10)

Also the total energy in an orbit is (stated without proof)

E = −GMm

2a
(7.11)

1There is a question on open orbits which you can practice on.
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where a is the semi-major axis of the elliptical closed orbit.
There are two more laws/theorem that I would like to state. First are the

Kepler’s Laws of planetary motion, which are empirical laws derived from experi-
ments.

Law 7.1. (Kepler’s Laws of Planetary Motion) These laws state the following:

(I) The orbit of a planet round the sun is an ellipse with the Sun at one focus.

(II) The line joining the Sun to a particular planet (the radius vector) sweeps
out equal areas in equal time.

(III) The square of the period of the orbit of a planet around the Sun is propor-
tional to the cube of its semi-major axis.

These empirical laws apply to the Solar system.

The second is the Shell Theorem, proved by Sir Isaac Newton in Mathematica.

Theorem 7.1. (Shell Theorem) The shell theorem gives gravitational simplifica-
tion to spherical bodies. There are two parts to the theorem:

(I) Outside a uniform spherical shell, the gravitational mass can be considered
as concentrated at the centre of the sphere.

(II) Inside a uniform spherical shell, the net gravitational contribution from
the shell is zero.

We will practice all these techniques in the following questions.

7.1 Questions

Question 29: This question is on gravity tunnels.

(a) Find the time for a person to travel through a tunnel through the centre of
the Earth, which has a radius of R (Figure 6.5).

(b) A man wants to build a straight tunnel (through the upper mantle) from
London to New York City. Find the theoretical time to travel from a city to
another using only gravity (Figure 7.1).
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Figure 7.1: Tunnel through centre of the Earth.
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Figure 7.2: Tunnel from London to NYC.

Question 30: A spaceship is orbiting around a planet of radius R in a circular
orbit of radius 3R. The captain of the spaceship wants to orbit the planet in a
new circular orbit of radius 9R.
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Figure 7.3: Spaceship Transfer.

(a) The most energy-efficient transfer is for the spaceship to transfer to an elliptical
orbit known as the Hohmann Transfer.

(i) Name points A and B. What is the relationship of vectors v and r there?

(ii) Calculate the semi-major axis of the orbit.

(iii) Calculate the initial velocity of the spaceship at A.

(b) In order to transfer to this elliptical orbit a tangential boost is required. Cal-
culate this velocity boost (velocity change).

(c) Calculate the velocity of the spaceship at B, Hence calculate the velocity boost
required at B.

(d) Find the transfer time. You may assume that the boost requires a negligible
amount of time.
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Question 31: This question is about perturbations on a circular orbit.

(I) Tangential Perturbations

(a) Consider a spaceship of mass m orbiting around a planet of mass M and
radius R. Find the velocity of the spaceship if the orbit is circular and
of radius 4R.

(b) A tangential impulse is given to the spaceship such that it collapses to
an orbit which just grazes the surface of the planet. Find this impulse.

(c) Now consider the spaceship given a general tangential impulse at point
Q on the circular orbit. Draw the resulting orbits if

(i) The impulse is directed in the same direction as the orbiting ve-
locity.

(ii) The impulse is directed in the opposite direction as the orbiting
velocity.

Mark point Q and the two apses of the orbit (the pericentre and apoc-
entre).
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Figure 7.4: Radial impulse causes the spaceship to collapse to an orbit that just
grazes the surface of the planet.

(II) Radial Perturbations

(a) The orbit is given a small radial impulse. Find the oscillation period of
the resulting oscillation caused by the perturbation.

(b) Now suppose the impulse is finitely large. Draw the resulting orbit,
marking the locations of the pericentre, apocentre and the point where
the impulse is given.

(III) Out-of-plane Perturbations

(a) The spaceship is given an impulse perpendicular to the plane of mo-
tion. Argue why the original motion is contained in a subspace of a 3D
Euclidean space. Describe the new orbit.

(b) Let’s suppose that the impulse is continuously given (by, say, the engine
of the spaceship). Calculate the torque given to the spaceship for the
orbit to return to the same position as the spaceship completes a cycle
of revolution of the orbit.
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Question 32: A spaceship approaches a planet with initial velocity v0 (measured
far away from the planet of radius R). It just grazes the planet and flies away.
Calculate the initial perpendicular distance between the centre of the planet and
the spaceship velocity (indicated as the impact parameter b in Figure 7.5).
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Figure 7.5: A spaceship with initial velocity v0 and impact parameter b travelling
in a hyperbolic orbit.
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7.2 Solutions and Commentary

Question 29: Find the time for a person to travel through a gravity tunnel
through the centre of the Earth, which has a radius of R (Figure 6.5). A man
wants to build a straight tunnel (through the upper mantle) from London to New
York City. Find the theoretical time to travel from a city to another using only
gravity (Figure 7.1).
Solution: First we find oscillation period for a gravity tunnel through the centre
of the Earth. Consider the man when he was distance r from the centre of the
Earth. Using the Shell theorem, we know that spherical shells larger than radius
r do not contribute to the restoring force, so the effective mass contributing to the
restoring force is

Meff =
r3

R3
M (7.12)

where M is the mass of the Earth. Then Newton’s Second Law gives

−GMm

r2

r3

R3
= mr̈ (7.13)

Hence we have

r̈ = −GM
R3

r (7.14)

Comparing this with the SHM equation (see §8) gives the angular frequency as

ω2
0 =

GM

R3
(7.15)

The period is therefore

T = 2π

√
R3

GM
(7.16)

Therefore the time of travel is just half the period.

t = π

√
R3

GM
(7.17)

Now consider a gravity tunnel not passing through the centre of the Earth
(Figure 7.6)
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Figure 7.6: Gravity tunnel connecting NYC and London, with quantities included
in the diagram.
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Consider the person at point P of the track (distance r) from the centre. We
apply the argument above (using the Shell Theorem) and Newton’s Second Law
gives

mẍ = −GM
r2

r3

R3
m sin θ = −GMm

R3
r sin θ (7.18)

where ẍ is the acceleration along the tunnel, with x measured from the middle of
the tunnel (the equilibrium point). Since x = r sin θ, we write

ẍ = −GM
R3

x (7.19)

The angular frequency is

ω2
0 =

GM

R3
(7.15)

same as before. Therefore the time to travel from one city to the next is the same
as before!

t = π

√
R3

GM
(7.17)
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Question 30: A spaceship is orbiting around a planet of radius R in a circular
orbit of radius 3R. The captain of the spaceship wants to orbit the planet in a
new circular orbit of radius 9R (Figure 7.3). The most energy-efficient transfer is
for the spaceship to transfer to an elliptical orbit known as the Hohmann Transfer.
In order to transfer to this elliptical orbit a tangential boost is required. Calculate
this velocity boost (velocity change). Then calculate the velocity of the spaceship
at B, Hence calculate the velocity boost required at B. Finally find the transfer
time. You may assume that the boost requires a negligible amount of time.
Solution: First we need find the initial velocity at A, i,e. the orbiting velocity
of the lower orbit. This is a circular orbit so we can write

GM

(3R)2
=

v2
0

3R
(7.20)

This gives

v2
0 =

GM

3R
(7.21)

To find the boost required, we need to calculate the velocity at A when the space-
ship is travelling in the elliptical orbit. The semi-major axis of the transfer orbit
is

a =
1

2
(3R + 9R) = 6R (7.22)

The energy in the orbit is

E = −GMm

12R
=

1

2
mv2

A −
GMm

3R
(7.23)

Solving for v2
A gives

v2
A =

GM

2R
(7.24)

Hence the boost required is

∆v = vA − v0 =

√
GM

2R
−
√
GM

3R
(7.25)

Now we calculate the velocity at B. Using the total energy again, we have

−GMm

12R
=

1

2
mv2

B −
GMm

9r
(7.26)

Solving for v2
B gives

v2
B =

GM

18R
(7.27)

Now the velocity required to travel in the upper circular orbit is

v2
u =

GM

9R
(7.28)
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Therefore the boost required is

∆v = vu − vB =
1

3

√
GM

R

(
1− 1√

2

)
(7.29)

The period of the transfer orbit can be found using Kepler’s Third Law. Mathe-
matically this is

T 2 =
4π2

GM
a3 (7.30)

The transfer time is half the period, giving

t =

√
216π2R3

GM
(7.31)

Question 31: This question is about perturbations on a circular orbit.

(I) Tangential Perturbations

(a) Consider a spaceship of mass m orbiting around a planet of mass M and
radius R. Find the velocity of the spaceship if the orbit is circular and
of radius 4R. A tangential impulse is given to the spaceship such that
it collapses to an orbit which just grazes the surface of the planet. Find
this impulse.

(b) Now consider the spaceship given a general tangential impulse at point
Q on the circular orbit. Draw the resulting orbits if

(i) The impulse is directed in the same direction as the orbiting ve-
locity.

(ii) The impulse is directed in the opposite direction as the orbiting
velocity.

Mark point Q and the two apses of the orbit (the pericentre and apoc-
entre).

(II) Radial Perturbations

(a) The orbit is given a small radial impulse. Find the oscillation period of
the resulting oscillation caused by the perturbation.

(b) Now suppose the impulse is finitely large. Draw the resulting orbit,
marking the locations of the pericentre, apocentre and the point where
the impulse is given.

(III) Out-of-plane Perturbations

(a) The spaceship is given an impulse perpendicular to the plane of mo-
tion. Argue why the original motion is contained in a subspace of a 3D
Euclidean space. Describe the new orbit.
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(b) Let’s suppose that the impulse is continuously given (by, say, the engine
of the spaceship). Calculate the torque given to the spaceship for the
orbit to return to the same position as the spaceship completes a cycle
of revolution of the orbit.

Solution: This is an interesting problem on perturbations on circular orbits2.
This involves drawing orbits - a skill that previously you might not have practised
before.

Tangential Perturbations First we need to find the orbiting velocity of the
original circular orbit. The centripetal acceleration is

GM

(4R)2
=

v2

4R
(7.32)

Solving for v2 gives

v2 =
GM

4R
(7.33)

The new elliptical orbit has an semi-major axis of a = 1
2
(R+4R). The total energy

in the orbit is:

E = −GMm

5R
=

1

2
mv2 − GMm

4R
(7.34)

where

v2 =
GM

10R
(7.35)

Then the impulse given is

∆J = m∆v = m

√
GM

R

(
1

2
− 1√

10

)
(7.36)

To draw the orbits, note that tangential perturbations given along the same di-
rection of the orbit increases the velocity (and hence kinetic energy) at the point.
This point has the largest velocity of the entire motion - the pericentre of the orbit.
The apocentre of the orbit must be on the other side of the planet (Figure 7.7).
The reverse is similar - when the tangential perturbation is given in the opposite
direction of the orbiting velocity, then this point has the smallest velocity of the
motion and is the apocentre of the orbit. The pericentre of the orbit is on the
other side of the planet (Figure 7.8).
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Figure 7.7: The resulting orbit when a tangential perturbation is given at point Q
along the orbiting direction. The points labelled A and P are the apocentre and
pericentre of the orbit.

2This is in fact one of my favourite problems in the sheet.
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Figure 7.8: The resulting orbit when a tangential perturbation is given at point Q
against the orbiting direction. The points labelled A and P are the apocentre and
pericentre of the orbit.

Radial Perturbations The first part of the question involves finding the oscilla-
tion period resulted from a radial perturbation. This is found easily by considering
the effective potential energy as derived in Equation 7.10 (and setting A = GMm).

Ueff =
J2

2mr2
− A

r
(7.10)

We need to first find the equilibrium of the radial motion. This is easily found by
setting dU

dr
= 0.

U ′eff = − J2

mr3
+
A

r2
= 0 (7.37)

This solves to give

r0 =
J2

mA
(7.38)

This value of r0 is called the semi-latus rectum of the motion. This is the length
of a line from the focus to the orbit where the line is parallel to the minor-axis.
The semi-latus rectum only depends on the angular momentum and the masses
involved in the motion. Further differentiating gives

U ′′eff =
3J2

mr4
− 2A

r3
(7.39)

Substituting the equilibrium value of r = r0 gives:

U ′′eff =
GMm

r3
0

(7.40)

In a general potential well, the second derivative of the potential energy expression
about the equilibrium gives the effective spring constant to the motion3. This
therefore gives the oscillation frequency as:

ω2
0 =

GM

r3
0

(7.41)

where r0 is the semi-latus rectum. Note that a radial impulse does not change
the angular momentum, therefore leaving the semi-latus rectum unchanged. Since

3This is most easily checked by Taylor-expanding near the equilibrium of the potential well,
and noting the U ′

eff = 0. The argument is explored in the appendix.
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the semi-latus rectum of a circular orbit is the radius of the orbit, the impact
point must be the semi-latum point on the orbit. Sketching in the pericentre and
apocentre of the orbit gives the resulting orbit.
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lol : to1Figure 7.9: The resulting orbit when a radial perturbation is given at point Q
(here the perturbation is directed radially outwards). The points labelled A and
P are the apocentre and pericentre of the orbit.

Perpendicular Perturbations In providing a perpendicular impulse, the angu-
lar momentum vector of the orbit is changed. The circular motion is still contained
in a plane (2D subspace of 3D), but the plane of motion is tilted from the original
motion.
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Figure 7.10: The resultant orbit when a perpendicular impulse was given.
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Figure 7.11: Change in the angular vector when providing an impulse of size Gdt.
The resulting angular momentum vector has the same magnitude as before but is
pointing in a different direction.

If the impulse is continuously given, we can denote the torque given to the
system as τ and use the vector diagram drawn in Figure 7.9 to give

Jdθ = τdt (7.42)

which gives

ωp =
τ

J
(7.43)
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This is precisely the precessing frequency of the system (the system is is undergoing
slow precession). Equating Equations 7.41 and 7.43 gives

τ 2 =
GM

R3
J2 (7.44)

where
J2 = (mrv)2 = GMm2R (7.45)

Therefore this gives

τ =
GMm

R
(7.46)
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Question 32: A spaceship approaches a planet with initial velocity v0 (measured
far away from the planet of radius R). It just grazes the planet and flies away.
Calculate the initial perpendicular distance between the centre of the planet and
the spaceship velocity (indicated as the impact parameter b in Figure 7.5).
Solution: This is a hyperbolic orbit, a type of open orbits that you might not
have seen before. However, conservation laws still holds in these type of orbits.
First begin with the conservation of angular momentum.

mv0b = mvR (7.47)

where b is the impact parameter, the perpendicular distance between the initial
vector (assuming infinitely far away) and the planet. The velocity and radial
vectors are perpendicular at the closest point of approach. Solving for v gives

v =
v0b

R
(7.48)

Conservation energy in the system gives (assuming the initial position of the object
is infinitely far away, so the potential energy is zero)

1

2
mv2

0 =
1

2
mv2 − GMm

R
(7.49)

Substituting Equation 7.48 gives

v2
0 = v2 − 2GM

R
(7.50)

Solving for b gives

b =
R

v0

√
v2

0 +
2GM

R
(7.51)

7.3 Take-home skills

1. Using conservation laws in gravitational problems.

2. Using Shell Theorem in problems.

3. Drawing orbits by using physical arguments.

4. Dealing with oscillations in a general potential well.

5. Dealing with precession problems.





Chapter 8

Simple Harmonic Motion

A harmonic motion is a type of periodic motion that repeats itself in a given
set of period. This type of motion can be found anywhere from mechanical to
electrical situations. It is also the fundamental concept in wave optics. Examples
of harmonic motion include pendulums and alternate circuits. A simple harmonic
motion is a type of harmonic motion:

Definition 8.1. A simple harmonic motion is a special kind of harmonic
motion for which when the system is slightly disturbed from its equilibrium position,
a restoring force will provide an acceleration proportional to the displacement to
return it to its equilibrium position. Mathematically this is expressed as

ẍ = −ω2x (8.1)

where ω is the angular frequency of the motion.

The solution of this ordinary differential equation (see [1]) is

x(t) = C cos(ωt) +D sin(ωt) (8.2)

where C and D are constants fixed by the initial conditions. This can be written
also in the form

x(t) = A cos(ωt+ φ) (8.3)

where A is the amplitude and φ is the phase factor fixed by the initial conditions.
Finding the equation of motion, identifying the frequency of oscillation and using
the test solution is sufficient in answering the following questions. Other results
related to simple harmonic motion that are not central to the argument can be
found in [2].
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8.1 Questions

Question 33: Calculate the frequency of oscillation for the following systems.
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Figure 8.1: A spring-mass system. The spring constant is k and the mass is m.
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Figure 8.2: A simple pendulum made of a string of length L and a bob of mass m.
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Figure 8.3: A torsional pendulum. The moment of inertial of the pendulum is I
and the torsional coefficient of the wire is c.

Cttrgjedt'^
ar€.. A '

l.$bu<9

-Ir-d..nra q llt-. -"-.4".1j ala.A.

Figure 8.4: A U-tube filled with liquid of density ρ. The cross-sectional area of
the tube is A and the total length of the liquid in the tube is l.
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Figure 8.5: A hydrometer floating on the surface of a liquid of density ρ. It is
oscillating vertically,. The cross-sectional area of the tube part is A and the mass
of the hydrometer is m.



8.1. QUESTIONS 115

Question 34: A uniform plank of length L is put on two inwardly rotating poles
initially distance l

2
from the centre of mass of the plank. Suppose the plank is

displaced by a distance x.
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Figure 8.6: The plank on two rotating poles system.

(a) Calculate the normal forces on the two poles.

(b) Hence find the restoring force.

(c) Find the period of oscillation.

Question 35: A good model to atomic oscillations is given by the Lennard-Jones
potential (sketched in Figure 8.7).
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Figure 8.7: Sketch of the Lennard-Jones potential.

U = −A
r

+
B

r9
(8.4)

where A = Ne2

4πε0
and B is a constant. Here e is the electron charge, ε0 is the

permittivity of free space and N is the number of electrons. Consider the H-Cl
bond. The equilibrium atomic separation is r = 0.13nm. Find B and hence the
frequency of vibration of the molecule.

Question 36: A question on springs.

(a) Prove that a system of springs in parallel has an effective spring constant of

keff =
∑
i

ki (8.5)

(b) Prove that a system of springs in series has an effective spring constant of

1

keff

=
∑
i

1

ki
(8.6)
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(c) Consider a box of mass 2m and initial velocity v0 shot into a box of mass m
(initially at rest) with an ideal spring of spring constant k sticking out on its
side (Figure 8.8). After the mass touches the spring they are connected to-
gether for the rest of the motion. Describe quantitatively the resultant motion
of the system.
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Figure 8.8: A box of mass 2m and initial velocity v0 fired head-on to a box of mass
m initially at rest. A spring of spring constant k is sticking out on the left side of
the stationary box.
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8.2 Solutions and Commentary

Question 33: Calculate the frequency of oscillation for the following systems.

1. A spring-mass system. (Figure 8.1)

2. A simple pendulum. (Figure 8.2)

3. A torsional pendulum. (Figure 8.3)

4. A U-tube. (Figure 8.4)

5. A hydrometer. (Figure 8.5)

Solution: In these equations all we have to do is to find the equation of motion
of the system.

Spring-mass System This is trivial. Applying NII gives

mẍ = −kx (8.7)

Comparing with the SHM equation (Equation 8.1) gives

ω2
0 =

k

m
(8.8)

Simple Pendulum Here use the rotational form of NII. This gives

Iθ̈ = −mgl sin θ (8.9)

Using the small angle approximation θ ≈ sin θ and noting that the moment of
inertia of the system is I = mr2, this gives

θ̈ = −g
l
θ (8.10)

Comparing with the SHM equation (Equation 8.1) gives

ω2
0 =

g

l
(8.11)

Torsional Pendulum This is the rotational form of the spring-mass system.
The equation of motion is

Iθ̈ = −cθ (8.12)

Comparing with the SHM equation (Equation 8.1) gives

ω2
0 =

c

I
(8.13)

where c is the torsional spring coefficient and I is the moment of inertia of the
pendulum.
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U-Tube Here when the two sides of the tube have unequal heights of liquid of
density ρ, the net restoring force is twice the weight of the displaced liquid of
height x. This weight is

W = 2ρgAx (8.14)

where A is the cross-sectional area of the tube. NII of the liquid (the entire length)
now gives

ρlẍ = −2ρgx (8.15)

Comparing with the SHM equation (Equation 8.1) gives

ω2
0 =

2g

I
(8.16)

Hydrometer The restoring force is provided by the buoyant force of the dis-
placed hydrometer length. NII gives

mẍ = −ρAxg (8.17)

where m is the mass of the hydrometer, ρ is the density of the liquid, A is the cross-
sectional area of the hydrometer and g is the gravitational constant. Comparing
with the SHM equation (Equation 8.1) gives

ω2
0 =

ρAg

m
(8.18)
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Question 34: A uniform plank of length L is put on two inwardly rotating
poles initially distance l

2
from the centre of mass of the plank. Suppose the plank

is displaced by a distance x (Figure 8.6). Find the period of oscillation of the
motion.
Solution: Begin with drawing a free-body diagram of the problem.

il

,ro-tt:.

Figure 8.9: Free-body diagram of the plank system.

Taking moments about points A and B gives

N1 =
mg

l

(
l

2
+ x

)
(8.19)

N2 =
mg

l

(
l

2
− x
)

(8.20)

Restoring force is given by

Fres = f2 − f1 = µk(N2 −N1) (8.21)

Using Equations 8.19 and 8.20 gives

mẍ = −2mgµk
l

x (8.22)

Therefore comparing with the SHM equation (Equation 8.1) gives

ω2
0 =

2gµk
l

(8.23)

giving

T = 2π

√
l

2gµk
(8.24)

Question 35: A good model to atomic oscillations is given by the Lennard-Jones
potential (sketched in Figure 8.7).

U = −A
r

+
B

r9
(8.25)

where A = Ne2

4πε0
and B is a constant. Here e is the electron charge, ε0 is the

permittivity of free space and N is the number of electrons. Consider the H-Cl
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bond. The equilibrium atomic separation is r = 0.13nm. Find B and hence the
frequency of vibration of the molecule.
Solution: This is similar to finding the frequency of oscillation of the radially
perturbed orbit. The equilibrium is found by setting U ′ = 0.

dU

dr
=
A

r2
− 9B

r10
(8.26)

This solves to give

B =
Ar8

0

9
(8.27)

where r0 is the equilibrium bond length. The second derivative of the potential
energy gives the effective spring constant.

U ′′(r0) = −2A

r3
0

+ 10
9B

r11
0

=
8A

r3
0

(8.28)

The frequency oscillation is therefore

ω2
0 =

8A

µr3
0

(8.29)

where µ is the reduced mass defined as

1

µ
=

1

mH

+
1

mCl

(8.30)

Substituting the values in given in the question gives

ν ≈ 1.1× 1014Hz (8.31)
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Question 36: A question on springs.

(a) Prove that a system of springs in parallel has an effective spring constant of

keff =
∑
i

ki (8.32)

(b) Prove that a system of springs in series has an effective spring constant of

1

keff

=
∑
i

1

ki
(8.33)

(c) Consider a box of mass 2m and initial velocity v0 shot into a box of mass m
(initially at rest) with an ideal spring of spring constant k sticking out on its
side (Figure 8.8). After the mass touches the spring they are connected to-
gether for the rest of the motion. Describe quantitatively the resultant motion
of the system.

Solution: For a system of springs connected in parallel, the extension length is
constant in all springs. This gives

F =
∑
i

kix = x
∑
i

ki = keffx (8.34)

Rearranging gives

keff =
∑
i

ki (8.32)

For a system of springs connected in series, the force is constant throughout. Note
that

x =
∑
i

xi (8.35)

Hence
F

keff

=
∑
i

F

ki
(8.36)

Eliminating F gives
1

keff

=
∑
i

1

ki
(8.33)

In the following spring-mass system, the resulting motion is a combination of linear
motion and oscillation. The entire system travels at the net velocity at the centre-
of-mass velocity:

vCOM =
2mv0

2m+m
=

2

3
v0 (8.37)

What remains to find is the oscillation frequency. The masses performs simple har-
monic motion about the centre-of-mass. Suppose the spring constant connecting



122 CHAPTER 8. SIMPLE HARMONIC MOTION

to mass m is k1 and the one connecting the mass 2m is k2. For springs connecting
in series this is

1

k
=

1

k1

+
1

k2

(8.38)

Note that the frequency of oscillation of the two masses must be the same, otherwise
there will be infinite acceleration at the centre-of-mass. This leaves

ω2
0 =

k1

m
=

k2

2m
(8.39)

This leaves
k2 = 2k1 (8.40)

Combining Equations 8.38 and 8.40 gives

k1 =
3

2
k (8.41)

Hence the oscillation frequency is

ω2
0 =

3k

2m
(8.42)

The general motion of the masses is

xi = Ai cos(ωt+ φi) + vCOMt (8.43)

where i = 1, 2 are labels for the two particles and Ai and φi are determined by
the initial conditions (which I am not bothered to solve). This is a normal mode
problem with the two orthogonal normal modes being the simple transverse mode
and oscillating mode.

8.3 Take-home Skills

1. Finding equation of motions of the system via either the energy method or
Newton’s Second Law.

2. Using results with regards to a general potential well.

3. Dealing with combinations of springs.



Appendix A

Basics of Lagrangian Mechanics

Lagrangian Mechanics is a reformulation of Classical Mechanics. There is no new
physics - it is simply a reformulation of a basic mechanics. The key to the method
is to solve the Euler-Lagrange’s equation.

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
(A.1)

This is typically derived by introducing the action integral, for which we will define
below.

Definition A.1. The action of a motion S is defined as the time integral of a
function.

S =

ˆ t2

t1

L(qi, q̇i, t)dt (A.2)

where the general coordinates of the system is described as qi, with the subscript i
indicating the numbering of a multi-particle system. Here the function L(q, q̇, t) is
called the Lagrangian and is defined as

L = T − V (A.3)

where T and V are the kinetic and potential energies respectively.

We will not go into the details of the origin of the Lagrangian function (see
for details). However, we will derive the Euler-Lagrange equation from Hamilton’s
Principle stated as follows:

Proposition A.1. Hamilton’s Principle states that for a motion in classical
mechanics action S is stationary for small variations δqi(t) about path for all qi.
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This is also known as the Principle of Least Action. The problem now becomes
a variational problem1 with the end points of the integral fixed. Taking a small
variation qi → qi + δqi gives:

δS =

ˆ t2

t1

(
δqi

∂L

∂qi
+ δq̇i

∂L

∂q̇i

)
(A.4)

where Einstein’s summation convention is used2. Performing an integration-by-
parts give

δS =

[
δqi

∂L

∂q̇i

]t2
t1

+

ˆ t2

t1

δqi

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
= 0 (A.5)

The first term vanishes since δqi is unchanged with fixed end points. The sec-
ond term must remain vanished under an arbitrary change in δqi, therefore the
integrand must be zero. This gives the Euler-Lagrange equation:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (A.1)

An effective use of the Lagrangian method must involve picking the correct gen-
eralised coordinates. This is normally done by considering the constraints of the
system and eliminating any additional degrees of freedom. For a full account for
the method, please refer to [3] .

1This has to do with maximising or minimising functionals, in this case S. For details see [3]
and [4].

2This means repeated indices are implicitly summed.



Appendix B

Three Balls Problem

This section concerns with the solution plotted out in The Three Balls Problem in
§5. Here I will provide my solution to the problem.

Lagrangian The key to success is to write down the correct Lagrangian. Here
the two coordinates I have used is x, the horizontal displacement of the entire
system and θ, the angle between the horizontal axis and the string, as defined in
Figure 5.8. The kinetic and potential energies are

T =
1

2
mẋ2 +m

[(
ẋ sin θ + lθ̇

)2

+ (ẋ cos θ)2

]
(B.1)

V = 0 (B.2)

Therefore the Lagrangian is

L =
1

2
mẋ2 +m

(
l2θ̇2 + 2lθ̇ẋ sin θ + ẋ2

)
(B.3)

This is defined in Mathematica as the following

Lagrangian =

1/2 m*D[x[t], t]^2 +

m*((l*D[\[Theta][t], t] +

D[x[t], t]*Sin[\[Theta][t]])^2 + (D[x[t], t]*

Cos[\[Theta][t]])^2)

Equation of Motion Now to obtain the equation of motion we use the Euler-
Lagrange Equation. The Mathematica code required is:

125
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EQNLana = D[D[Lagrangian, D[x[t], t]], t] == D[Lagrangian, x[t]];

EQNLanb =

D[D[Lagrangian, D[\[Theta][t], t]], t] ==

D[Lagrangian, \[Theta][t]];

The Lagrangian is independent in x so the conserved quantity is found by

EQNCons = Simplify[D[Lagrangian, D[x[t], t]]] == B;

So ẋ can be found by the command

VelSol = Flatten[Solve[EQNCons, D[x[t], t]]];

The Equation of Motion is therefore

EQNLanbtosolve = Simplify[EQNLanb /. VelSol /. D[VelSol, t]];

which gives

θ̈ =
2 cos θ sin θ

1 + 2 cos2 θ
θ̇2 (B.4)

exactly as obtained via considering forces.

Numerical Differentiation The equation of motion has no closed-form solu-
tions. Mathematica has a built in function to solve numerical integrals. I have then
manually implemented the boundary condition (collision) by finding the root of the
problem at the respective angles and implementing θ̇|+ = −θ̇|− at the boundaries.
The following is the code to generate the two graphs.

BCLan1 = \[Theta][0] == \[Pi]/6;

BCLan2 = \[Theta]’[0] == -0.1;

ConstantsRule = {A -> 1, B -> 0, l -> 1, m -> 1};

SolLan2 =

Flatten[NDSolve[

EQNLan2btosolve && BCLan1 && BCLan2 /.

ConstantsRule, \[Theta], {t, 0, 20}]];

Plot[\[Theta][t] /. SolLan2, {t, 0, 20}, PlotStyle -> Red,

AxesOrigin -> {0, 0}, PlotRange -> All];

Root1 = FindRoot[\[Theta][t] /. SolLan2, {t, 2, 5}];

Plot[\[Theta]’[t] /. SolLan2, {t, 0, 20}, PlotStyle -> Red,

AxesOrigin -> {0, 0}, PlotRange -> All];

BCLan3 = (\[Theta]’[t] /. Root1) == (-\[Theta]’[t] /. Root1 /.

SolLan2);

BCLan4 = (\[Theta][t] /. Root1) == (\[Theta][t] /. Root1 /. SolLan2);

SolLan2a =

Flatten[NDSolve[

EQNLan2btosolve && BCLan3 && BCLan4 /.

ConstantsRule, \[Theta], {t, t /. Root1, 50}]];
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Show[Plot[\[Theta][t] /. SolLan2a, {t, t /. Root1, 50},

PlotStyle -> Red, AxesOrigin -> {0, 0}, PlotRange -> All],

Plot[\[Theta][t] /. SolLan2, {t, 0, t /. Root1}, PlotStyle -> Blue,

AxesOrigin -> {0, 0}, PlotRange -> All]];

Show[Plot[\[Theta]’[t] /. SolLan2a, {t, t /. Root1, 50},

PlotStyle -> Red, AxesOrigin -> {0, 0}, PlotRange -> All],

Plot[\[Theta]’[t] /. SolLan2, {t, 0, t /. Root1}, PlotStyle -> Blue,

AxesOrigin -> {0, 0}, PlotRange -> All]];

Root2 = FindRoot[(\[Theta][t] - \[Pi]) /. SolLan2a, {t, 30, 40}];

BCLan5 = (\[Theta]’[t] /. Root2) == (-\[Theta]’[t] /. Root2 /.

SolLan2a);

BCLan6 = (\[Theta][t] /. Root2) == (\[Theta][t] /. Root2 /.

SolLan2a);

SolLan2b =

Flatten[NDSolve[

EQNLan2btosolve && BCLan5 && BCLan6 /.

ConstantsRule, \[Theta], {t, t /. Root2, 100}]];

Root3 = FindRoot[\[Theta][t] /. SolLan2b, {t, 58, 63}]

Show[Plot[\[Theta][t] /. SolLan2b, {t, t /. Root2, t /. Root3},

PlotStyle -> Green, AxesOrigin -> {0, 0}, PlotRange -> All],

Plot[\[Theta][t] /. SolLan2a, {t, t /. Root1, t /. Root2},

PlotStyle -> Red, AxesOrigin -> {0, 0}, PlotRange -> All],

Plot[\[Theta][t] /. SolLan2, {t, 0, t /. Root1}, PlotStyle -> Blue,

AxesOrigin -> {0, 0}, PlotRange -> All],

AxesLabel -> {t, \[Theta]}]

Show[Plot[\[Theta]’[t] /. SolLan2b, {t, t /. Root2, t /. Root3},

PlotStyle -> Green, AxesOrigin -> {0, 0}, PlotRange -> All],

Plot[\[Theta]’[t] /. SolLan2a, {t, t /. Root1, t /. Root2},

PlotStyle -> Red, AxesOrigin -> {0, 0}, PlotRange -> All],

Plot[\[Theta]’[t] /. SolLan2, {t, 0, t /. Root1}, PlotStyle -> Blue,

AxesOrigin -> {0, 0}, PlotRange -> All], AxesLabel -> {t, \[Omega]}]





Appendix C

On central force orbits

In this section some previously assumed results will be derived and proved.

C.1 Conic forms of orbits

We begin by deriving the orbits equation, which allows us to derive the solution
that gives the form of the orbits. Begin by considering the total energy of the
problem

E =
1

2
mṙ2 +

J2

2mr2
− A

r
(C.1)

where J is the angular momentum of the system and A = GMm. Now we use the
substitution u = 1

r
, and by noting that

ṙ =
dr

dφ
φ̇ = −φ̇r2 du

dφ
(C.2)

Then

ṙ = − J
m

du

dφ
(C.3)

Substituting into Equation C.1 gives(
du

dφ

)2

+ u2 − 2m

J
(E + Au) = 0 (C.4)

Completing the square gives(
du

dφ

)2

+

(
u− 1

r0

)2

−
(

1

r2
0

+
2mE

J2

)
= 0 (C.5)
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where r0 is the semi-latus rectum (see later) given by

r0 =
J2

mA
(C.6)

we define e as a constant as follows:

e2 = 1 +
2mEr2

0

J2
= 1 +

2EJ2

mA2
(C.7)

The differential equation becomes(
du

dφ

)2

=
e2

r2
0

−
(
u− 1

r0

)
(C.8)

This has a solution

u =
1

r0

(1 + e cos(φ− φ0)) (C.9)

Reorienting the axes allow we to set φ0 = 0. This gives the conic section equation

r =
r0

1 + e cosφ
(C.10)

This shows that the orbits of central forces are conic sections with the parameter
e, known as the eccentricity, determining the shape of the orbit.

C.2 Total energy in an orbit

Now we try and derive the total energy in a closed elliptical orbit.

E = − A
2a

(C.11)

We start by considering the energy at the perihelion. This is

E =
1

2
mv2

P −
A

rP
(C.12)

Note that at the perihelion, using Equation C.10 (set φ = 0) and the definition of
angular momentum i.e.

rP =
r0

1 + e
(C.13)

L = mvP rP (C.14)

The major-axis is

2a =
r0

1 + e
+

r0

1− e
(C.15)

Substituting this into Equation C.12 gives

E = − A
2a

(C.11)

or

E = −GMm

2a
(C.16)

as required.
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